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Chapter 1

Introduction

1.1 THE ORIGINS AND THE NATURE OF OP-
ERATIONS RESEARCH

During World War II scientists and engineers were asked to analyse several military
problems: developing effective methods of using the newly invented radar, how
to better manage convoy and antisubmarine, bombing and military operations.
The applications of mathematics and scientific methods to military operations was
called Operations Research ( -commonly referred to as OR). The term OR (or often
Management Science) means a scientific approach to decision making which seeks
to determine how best design and coordinate a system usually under conditions
requiring the allocation of the scarce resources. The methodology of the operations
research is employed to problems that concern how to conduct and coordinate the
operations (i.e. activities) within organizations. The nature of organization is
essentially immaterial, OR has been applied extensively in such diverse areas as:

• Manufacturing

• Transportation

• Telecommunication

• Financial planning

• Public services

• Health care

• The military

The research part of the name of OR means that scientific methods are used to
investigate the problem considered. The process begins by carefully observing and
formulating the problem, including gathering all the relevant data. The second
step is to construct a scientific (typically mathematical) model that attempts to
abstract the essence of the real problem. It is then assumed (hypothesized) that
the model is a sufficiently precise representation of the essential features of the
situation for the conclusions (solutions) obtained from the model to also be valid for
the real problem. Next, suitable experiments are conducted to test this hypothesis,
modify it as needed, and eventually verify some form of the hypothesis (This step
is frequently referred to as model validation).
But OR is also concerned with the practical management of the organization.

Therefore, to be successful, OR must also provide positive, understandable conclu-
sions to the decision maker(s) when they are needed.

5



6 CHAPTER 1. INTRODUCTION

An additional characteristic is that OR frequently attempts to find a best solu-
tion(referred to as an optimal solution) for the problem under consideration (There
may be more than one the best solution, in which case we choose one of them).
Rather than simply improving the status quo, the aim in OR is to identify a best
possible course of action. This search for optimality is an important theme in OR.
Another important characteristic of OR is the so called team approach. It is evident
that no single individual should be expected to be expert on all the aspects of OR
work or the problems typically considered: this would require a group of people
having diverse backgrounds and skills. Such an OR team needs to include people
who collectively are highly trained in mathematics, statistics and probability theory,
economics, business administration, computer sciences, engineering, the behavioral
sciences and the special techniques of OR. There are a lot of techniques to solve
mathematical problems that can arise in practice. The most prominent is linear
programming. Other techniques include integer programming, dynamic program-
ming, networks programming (in which the problem can be modeled as a network),
nonlinear programming. Another group consists of queuing and simulations models.
In practice, the algorithms (methods of solutions for the each kind of model) are
executed by commercial software packages.
OR has had an impressive impact on improving the efficiency of numerous or-

ganizations around the world, and has made a significant contribution to increasing
the productivity of the economies of various countries. There are now a lot of coun-
tries in the International Federation of Operations Research Societies (IFORS) with
each country having a national OR society (for example BOS in Poland).

1.2 OVERVIEW OF THE OR MODELLING AP-
PROACH

OR is applied to problems that concern how to conduct and coordinate opera-
tions(i.e. activities) within an organization. The major phases of a typical OR
study are the following:

1. Define the problem and gather relevant data.

2. Formulate a mathematical model to represent the problem.

3. Develop a computer-based procedure for deriving a solution to the problem
resulting from the model.

4. Test the model and refine it as needed.

5. Prepare for the ongoing application of the model as prescribed by manage-
ment.

6. Implement.

Now we will discuss these phases in turn starting with the process of defining the
problem and gathering data which includes determining such things as:

• the appropriate objectives,

• constraints on what can be done,

• interrelations between the area to be studied and the other areas of organiza-
tion,

• possible alternative courses of action,
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• time limits for making a decision

The second phase is to formulate a mathematical model. A mathematical model is
defined by a system of equations and related mathematical expressions that describe
the essence of a problem. A main elements of a model are the following:

Decision variables If there are n related quantifiable decisions to be made, they
are represented as decision variables x1, x2, . . . , xn whose values are to be
determined.

Objective function The appropriate (overall) measure of performance(e.g. profit)
is expressed as a mathematical function of the decision variables (for example
P = 5x1 + 2x2 + · · ·+ 20xn).

Constraints Any restrictions on the values that can be assigned to the decision
variables are expressed mathematically, typically by means of inequalities or
equations (for example (x1)

2 − 2x1x2 + (x2)
2 ≤ 25).

Parameters of the model The constants (namely, the coefficients and right- hand
sides ) in the constraints and the objective function.

The next phase is to solve the resulting model. The problem is to choose the
values of the decision variables so as to optimize (maximize or minimize)
the objective function, subject to the specific constraints. An important
part of the model-building process is determining the appropriate values to assign
to the parameters of the model. This requires gathering relevant data. Another
important part of model solution is so called Sensitivity analysis. This aims
to answer the following question: How would the solution derived from the model
change (if at all) if the values assigned to the parameters were changed to other
plausible values (There is uncertainty about true values of the parameters).
Deriving the solution from the model

• Develop a computer-based procedure for deriving the solution to the problem
from the model-sometimes it possible to use standard OR algorithms (there
are a number of readily available software pacakages).

• Search for an optimal, or best, solution. These solutions are optimal only
with respect to the model being used (since the model is an idealized, rather
then an exact, representation of the real problem).

• Use heuristic procedures (i.e. intuitively designed procedures that do not
guarantee an optimal solution) to find a good suboptimal solution in case
where the time or cost required to find an optimal solution to the model is
very large.

• Postoptimality analysis orWhat-if analysis. This answers the question -
what would happen to the optimal solution if different assumptions are made
about future conditions? It also involves conducting sensitivity analysis to
determine which parameters of the model are most critical in determining the
solution.

• Test the model and refine it as needed.

In this textbook, we concentrate on formulating mathematical models commonly
used in modelling decision makers’ problems and solving the mathematical models.
The main subjects of the textbook are following:

• Linear Programming



8 CHAPTER 1. INTRODUCTION

– Introduction to Linear Programming

– Solving Linear Programming Problems - The Simplex Method

– Duality Theory and Sensitivity Analysis

• Integer Programming

• Decision Analysis

• Multiple Objective Linear Programming and Goal Programming

This course is based on the following textbooks:

• Hiller F. S. Hillier, G.J. Liberman: Introduction to Operations Research, 7th
ed., McGrawHill,2001.

• WinstonW.L.Operations Research: Applications and Algorithms, PWS-KENT
Publishing Company, Boston, 1987.

Additional literature

• Anderson D.R.,D.J.Sweeney, and T.A.Williams: An Introduction to Manage-
ment Science, 8th ed., West,St.Paul,Mn,2000.

• Taha, H. Operations Research: An Introduction, 8th ed., Pearson Prentice
Hall, Upper Sadle River,NJ,2007.

• Williams H.P.: Model Building in Mathematical Programming, 3d ed.,Wiley,
New York,1990.



Chapter 2

Introduction to Linear
Programming

2.1 FORMULATION OF LINEAR PROGRAM-
MING PROBLEMS

Operations Research (OR) means a scientific approach to decision making,
which seeks to determine how to optimally design and operate a system, usually
under conditions requiring the allocation of scarce resources.
An OR study has the following major phases:

I. Define the problem and gather relevant data. ⇒

II. Formulate a mathematical model to represent the problem ⇒

III. Develop a procedure for deriving a solution to the problem ⇒

IV. Test the model and refine it as needed ⇒

V. Implement

Some of these phases will be illustrated the following example.
Prototype Example :

I. The GW firm manufactures two types of products W1 and W2 using two
types of raw materials S1 and S2. The GW firm wishes to determine how
many products of each type to produce, so as to achieve the highest possible
profit.

II. The following data are available:

– 1 unit of W1 requires 2 kg of S1 and 1 kg of S2.

– 1 unit of W2 requires 1 kg of S1 and 1 kg of S2.

– At present, GW has 100 kg of S1 and 80 kg of S2 in stock.

– Each unit of W1 gives a profit of $3 and each unit of W2 gives a profit
of $2.

– Demand for W1 equals 40 units and demand for W2 is unlimited.

III. We define the decision variablesthe decision variablesthe decision variables: x1 - amount of product W1 produced, x2 -
amount of product W2 produced, Z - total profit from producing W1 and W2.

9
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The mathematical model is as follows:

maxZ = 3x1 + 2x2 [Maximize profit]
2x1 + x2 ≤ 100 [Constraint on raw material S1]
x1 + x2 ≤ 80 [Constraint on raw material S2]
x1 ≤ 40 [Demand for W1]
x1 ≥ 0 [Sign restriction]
x2 ≥ 0 [Sign restriction]

The problem is to choose values of x1 and x2, so as to maximize Z = 3x1 +
2x2 subject to the restrictions. We want to derive a production plan that
maximizes GW’s profit without violating the constraints on limited resources.

IV. We use an algorithm (the next part of the course will focus on the simplex
method for solving linear programming problems). We obtain: x1 = 20,
x2 = 60, Z = 180, so GW should produce 20 units of W1 and 60 units of W2

with a resulting total profit of $180.

2.2 THE LINEAR PROGRAMMING MODEL

The mathematical model for a general mathematical programming problem is as
follows:

max(min)z = f(x1, . . . , xn) [Objective function]
g1(x1, . . . , xn) ≤ (≥,=)b1 [Constraint 1]
. . .
gm(x1, . . . , xn) ≤ (≥,=)bm [Constraint m]

x1, . . . , xn are called decision variablesdecision variablesdecision variables (They should completely describe the de-
cision to be made). A solution for which all the constraints are satisfied is called
a feasible solutiona feasible solutiona feasible solution. A feasible solution with the largest (smallest) value of the ob-
jective function is called an optimal solutionan optimal solutionan optimal solution.

The function h(x1, . . . , xn) = a1x1+a2x2+· · ·+anxn of x1, x2, . . . , xn is a linear functiona linear functiona linear function.
A model in which all the functions f, g1, . . . , gm are linear is called a linear modela linear modela linear model
or a linear programming problema linear programming problema linear programming problem. A linear programming model(LPM) is defined as
follows:

max(min)z = c1x1 + c2x2 + · · ·+ cnxn [Objective function]
a11x1 + a12x2 + · · ·+ a1nxn ≤ (≥,=)b1 [Constraint 1]
. . .
am1x1 + am2x2 + · · ·+ amnxn ≤ (≥,=)bm [Constraint m]
x1 ≥ 0, . . . , xr ≥ 0, r ≤ n [Nonnegativity constraints]

The sign constraints xi ≥ 0 are special linear constraints (nonnegativity con-
straints).

2.3 EXAMPLES OF LINEAR PROGRAMMING
PROBLEMS

1. The Diet Problem. Person X requires that all the food she/he eats come
from one of the four ”basic food groups”: butter, bread, orange juice and
ham. She/he wants to prepare breakfast only from these foods. Each scoop of
butter costs$5, each slice (piece) of bread costs$2, each bottle of orange juice
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costs $3, and each piece (slice) of ham costs $8. Each day X must ingest at
least 500 calories, 6 oz of sugar, 10 oz of carbohydrates, and 8 oz of fat. The
nutritional content per unit of each food is shown in the following table:

Calories Sugar Carbohydrates Fat Unit price($)

Butter (1 scoop) 400 3 2 2 5
Bread (1 piece) 200 2 2 4 2

Orange juice (1 bottle) 150 0 4 1 3
Ham (1 slice) 500 0 4 5 8

Formulate a linear programming model that satisfies the daily nutritional
requirements of person X at minimum cost.

Decision variables:

• x1 - amount(number of scoops) of butter,

• x2 - amount(number of pieces) of bread,

• x3 - number of bottles of orange juice,

• x4 - amount (number of slices) of ham.

Linear Programming Model:

minZ = 5x1 + 2x2 + 3x3 + 8x4 [Minimize total cost]
400x1 + 200x2 + 150x3 + 500x4 ≥ 500 [Calorie constraint]
3x1 + 2x2 ≥ 6 [Sugar constraint]
2x1 + 2x2 + 4x3 + 4x4 ≥ 10 [Carbohydrates constraint]
2x1 + 4x2 + x3 + 5x4 ≥ 8 [Fat constraint]
xi ≥ 0, i = 1, . . . , 4 [Sign constraint]

The optimal solution to this problem (solved by computer) is x1 = 0, x2 = 3,
x3 = 1, x4 = 0, Z = 9. Thus, the minimum-cost diet incurs a cost of $9 and
consists of 3 pieces of bread and one bottle of orange juice.

2. Production Process Model ( W.L. Winston Operations Research: Applications
and Algorithms, Example 3.11, pp.87-90) Rylon Corporation manufactures
four types of perfumes: Brute, Chanelle, Super Brute and Super Chanelle.
The production process is given in the Figure below.

Raw mat.

Brute

Chanelle

Super Brute

Super Chanelle

-3$/lb

7$/oz

6$/oz

14$/oz

10$/oz
sales

sales

sales

sales

• Processing 1 lb of raw material requires 1 hour of working time and gives
3 oz of Brute and 4 oz of Chanelle.

• 1 oz of Brute requires an additional 3 hours of processing to yield 1 oz
of Super Brute.

• 1 oz of Chanelle requires an additional 2 hours of processing to yield 1
oz of Super Chanelle.
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• Rylon has 6000 hours of time available and can purchase up to 4000 lb
of raw material.

R.C must determine how much material to purchase and how much of each
type of perfume should be produced and wants to maximize profit(=revenues
from perfume sales - processing costs).

Decision variables:

• x1 - number of ounces of Brute sold,

• x2 - number of ounces of Super Brute sold,

• x3 - number of ounces of Chanelle sold,

• x4 - number of ounces of Super Chanelle sold,

• x5 - number of pounds(lb) of raw material purchased.

Linear Programming Model:

max z = 7x1 + 14x2 + 6x3 + 10x4 − 3x5 [Maximize profit]
x1 + x2 − 3x5 = 0 [Manufacturing Brute and Super Brute]
x3 + x4 − 4x5 = 0 [Manufacturing Chanelle and Super Chanelle]
x5 ≤ 4000 [Limit on raw materials]
3x2 + 2x4 + x5 ≤ 6000 [Limit on working time]
xi ≥ 0, i = 1, . . . , 5 [Sign restrictions]

After solving the model by computer we obtain the following optimal solution:
Z=172 666.667$ (profit), x1 = 11333.333 oz of Brute, x2 = 666.667 oz of
Super Brute, x3 = 16000 oz of Chanelle, x4 = 0 oz of Super Chanelle and
x5 = 4000lb of raw material.

3. An Inventory Model - Multiperiod Decision problems. A factory must produce
a certain product over the next four quarters. The demand for each quarter
is known. The factory wants to minimize total costs and has to meet all
demands on time. The appropriate data are given in the following table:

Q I Q II Q III Q IV

Demand (units) 30 60 70 25
Maximum production level(units) 60 60 60 60

Production cost ($/unit) 55 50 50 55
Storage cost($/unit/quarter) 2 2 3 -

Decision variables:

• xi - number of units produced during quarter i, i = 1, . . . 4.

• mi - number of units of the product in store (on the inventory) at the
end of quarter i, i = 1, . . . 4.

30 60 70 25

x1 x2 x3 x4

m1 m2 m3
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Linear Programming Model:

min z = 55x1 + 50x2 + 50x3 + 55x4 + 2m1 + 2m2 + 3m3 [Minimum total cost]
x1 −m1 = 30 [Balance for I]
m1 + x2 −m2 = 60 [Balance for II]
m2 + x3 −m3 = 70 [Balance for III ]
m3 + x4 = 25 [Balance for IV]
xi ≤ 60, i = 1, . . . 4 [Production capacity]
xi ≥ 0, mi ≥ 0, i = 1, . . . , 4 [Sign restrictions]

The optimal solution to this problem is Z = 9615: x1 = 40, x2 = 60, x3 = 60,
x4 = 25, m1 = 10, m2 = 10, m3 = 0.

4. Multiperiod Financial Model. (W.L. Winston Operations Research: Appli-
cations and Algorithms, Example 3.13, pp.95-97) Finco Invest. Corp. must
determine an investment strategy for the next three years. At present (time
0), $100000 is available for investment. Investments A,B,C,D and E are avail-
able. The cash flow associated with investing $1 in each investment is given
in the table below.

0 1 2 3

A -1$ +0.5$ +1$ -

B - -1$ +0.5$ 1$

C -1$ +1.2$ - -

D -1$ - - +1.9$

E - - -1$ +1.5$

For example, $1 invested in B requires $1 in cash at time 1 and returns $0.5 at
time 2 and $1 at time 3. To ensure that the company’s portfolio is diversified,
Finco requires that at most $75000 be placed in any single investment. In
addition, Finco can earn interest at 8% per year by keeping uninvested cash in
a bank. Returns from investments may be immediately reinvested. Formulate
a linear programming problem whose solution will maximize the amount of
cash in hand at time 3. Finco must decide how much money should be placed
in each investment(including the bank).

Decision variables:

• xA, xB , xC , xD, xE - dollars invested in investment A,B,C,D, and E re-
spectively,

• y0, y1, y2 - dollars invested in the bank at time t (t=0,1,2).

The linear programming model:

max z = xB + 1.9xD + 1.5xE + 1.08y2 [Maximize the amount of cash
in hand at time 3]

xA + xC + xD + y0 = 100000 [Balance at time 0]
0.5xA + 1.2xC + 1.08y0 − xB − y1 = 0 [Balance at time 1]
xA + 0.5xB + 1.08y1 − xE − y2 = 0 [Balance at time 2]
xA, xB , xC , xD, xE ≤ 75000 [Limit on dollars invested in investments]
xA, . . . , xE , y0, y1, y2 ≥ 0 [Nonnegativity constraints]

The optimal solution is Z = 218500, xA = 60000, xB = 30000, xD = 40000 ,
xE = 75000, xC = y0 = y1 = y2 = 0. Finco should not invest in C nor in the
bank.
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2.4 THE GRAPHICAL METHOD FOR SOLV-
ING LPM.

This method can be used when the number of variables is at most three.

Example 1. Solve the following linear programming problem:

10 20 30 40 50 60 70 80

20

40

60

80

100

(20,60)

z=180

z=0

z=60

maxZ = 3x1 + 2x2

2x1 + x2 ≤ 100
x1 + x2 ≤ 80
x1 ≤ 40
x1 ≥ 0
x2 ≥ 0

x1

x2

Step 1 We label the variables x1, x2 and coordinate axes x1, x2 and graph the set
of points satisfying the linear inequalities (or equalities) involving the two
variables (it is possible to do this in three dimensional space). This set of
points is called the feasible regionthe feasible regionthe feasible region (the shaded area on the Figure).

Step 2 We draw contours of the objective function Z = a1x1 + a2 = 3x1 + 2x2 for
a few values of Z. In this case, we take Z = 0, Z = 60 and Z = 180. These
lines are called isoprofit lines. Once we have drawn the isoprofit line we can
generate other lines by moving parallel to this line in the direction in which Z
increases (for a max problem). The last isoprofit line intersecting (touching)
the feasible region defines the largest Z-value and determines the optimal
solution to the model.

The optimal(maximizing) solution is x1 = 20, x2 = 60, Z = 180. This problem has
exactly one optimal solution.
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Example 2. Solve the following linear programming problem:

10 20 30 40 50 60 70 80

20

40

60

80

100

z=160

z=0

z=40

(20,60)

(0,80)

max z = 2x1 + 2x2

2x1 + x2 ≤ 100
x1 + x2 ≤ 80
x1 ≤ 40
x1 ≥ 0
x2 ≥ 0

x1

x2

This problem has multiple optimal(or alternative optimal) solutions. This means
that there is an infinite number of optimal solutions. (Every point on the line
segment connecting the points (0,80) and (20,60) is optimal, with Z = 160). We
may express the set of optimal solution as follows:

x1 = 0t+ 20(1− t)
x2 = 80t+ 60(1− t)
t ∈ [0, 1]

Example 3. Solve the following problem :

10 20 30 40

20

40

60

80

z=0

z=40

z=320
max z = 2x1 + 2x2

2x1 − x2 ≤ 40
x2 ≥ 20
x1 ≥ 0
x2 ≥ 0

x1

x2
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Unbounded Optimal Solution. The following problem has no optimal solution, be-
cause it is possible to find points in the feasible region with an arbitrarily large
Z-value.

Example4. Solve the following problem:

10 20 30 40 50 60

20

40

60

max z = 3x1 + 2x2

60x1 + 40x2 ≤ 240
x1 ≥ 30
x2 ≥ 20

x1

x2

This problem has no optimal solution - the set of feasible solutions is empty (Empty
Feasible Region). The system of inequalities(and/or equalities ) defining the feasi-
ble region is inconsistent.

Observations From the graphical solution of two-variable linear programming
problems we see that:

• The set of feasible solutions (feasible region)of a linear programming prob-
lem(LPP) is a convex setconvex setconvex set . The set D in n-dimensional space is a convex setconvex setconvex set if
the line segment joining any pair of points in D is wholly contained in D.

• There is only a finite number of extreme points(corner points) in the set of
feasible solutions. For any convex set D, a point P is an extreme point if each
line segment that lies completely in D and contains the point P has P as an
end point of the line segment.

• The optimal solution is attained (if it exists) in at least one extreme point.

Every LPP must fall into one of the following four cases:

1. There is only one optimal solution which is an extreme point (corner point)
of the set of feasible solutions.

2. There are alternative optimal solutions (an infinite number of optimal solu-
tions), but at least one optimal solution occurs at an extreme point (corner
point) of the set of feasible solutions to the LPP.

3. The LPP is unbounded: There are points in the set of feasible solutions with
an arbitrarily large Z- value (max problem) or arbitrarily small Z- value (min
problem).

4. The LPP is infeasible: The set of feasible solutions is the empty set(The
feasible region contains no points).

All the above facts can be proved for any LPP.



Chapter 3

Solving Linear Programming
Problems: The Simplex
Method

3.1 PREVIEW OF THE SIMPLEX METHOD

Before the simplex algorithm can be used to solve any linear programming problem
(LPP), it must be converted into an equivalent standard formstandard formstandard form of LPP in which all
the constraints are equations and all the following variables are non-negative.:

max(min)z = c1x1 + c2x2 + · · ·+ cnxn

a11x1 + a12x2 + · · ·+ a1nxn = b1
. . .
am1x1 + am2x2 + · · ·+ amnxn = bm
xi ≥ 0, i = 1, . . . , n

The system equations(constraints) can be written much more concisely in matrix
form as follows: AAAxxx = bbb,xxx ≥ 0. We assume, that the rank of matrix AAA equals m.
Any LPP can be converted into this standard form as follows:

1. We convert a (≤) constraint ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi into an equality
constraint by adding a slack variableslack variableslack variable si to the left-hand side of the constraint
and adding the sign restriction si ≥ 0: ai1x1 + ai2x2 + · · ·+ ainxn + si = bi,
si ≥ 0.

2. We convert (≥) constraint ai1x1 + ai2x2 + · · · + ainxn ≥ bi into an equality
constraint by subtracting a surplus variablesurplus variablesurplus variable si from the left-hand side of the
constraint and adding the sign restriction si ≥ 0: ai1x1+ai2x2+ · · ·+ainxn−
si = bi, si ≥ 0.

3. (Dealing with unrestricted variables) If variable xi can take both negative
and nonnegative values, we use the substitution: xi = ui − vi and add two
non-negativity constraints ui ≥ 0, vi ≥ 0.

Example. Convert the following linear programming problem into the standard
form:

17
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max z = 2x1 + 3x2 − x3

x1 − 2x2 ≤ 5
x2 + 3x3 ≥ 3
x1 + x2 − 2x3 = 20
x1, x2 ≥ 0

After converting constraints 1 and 2, we obtain:

max z = 2x1 + 3x2 − x3

x1 − 2x2 + s1 = 5
x2 + 3x3 − s2 = 3
x1 + x2 − 2x3 = 20
x1, x2, s1, s2 ≥ 0

Next, we make the substitution x3 = u3 − v3 and obtain the standard form of the
problem:

max z = 2x1 + 3x2 − u3 + v3
x1 − 2x2 + s1 = 5
x2 + 3u3 + 3v3 − s2 = 3
x1 + x2 − 2u3 + 2v3 = 20
x1, x2, s1, s2, u3, v3 ≥ 0

Converting from the graphical to the algebraic method

Graphical Method:

1. Graph all the constraints, including the nonnegativity restrictions - Suppose
the solution space consists of infinite number of feasible solutions.

2. Identify feasible corner points (extreme points) of the solution space -
Candidates for the optimal solution are given by a finite number of corner
points.

3. Use the objective function to determine the optimal corner point from
among all the candidates.

Algebraic Method:

1. Represent the solution space by m equations in n variables and restrict all the
variables to nonnegative values, suppose m ≤ n and the system has infinite
number of feasible solutions.

2. Determine a feasible basic solution of the equations - Candidates for the
optimal solution are given by a finite number of basic feasible solutions.

3. Use the objective function to determine the optimum basic feasible solu-
tion from among all the candidates.

Definition 1. Consider the set of equations AAAxxx = bbb, if we set n −m variables to
zero and then solve the m equations for the remaining m variables, the resulting
solution, if unique, is called a basic solution and must correspond to a (feasible or
infeasible) corner point (extreme point) of the solution space. The n−m variables
set to zero are known as nonbasic variables (NBV) and the remaining m variables
are called basic variables(BV).

Remark The set of columns of the matrix AAA that corresponds to the basic
variables is a linearly independent set of vectors. This set is called a basis and will
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be denoted by B.

Example. Find a few basic solutions to the following system of two equations with
four variables:

x1 + x2 + 2x4 = 3
2x1 − x2 − x3 + 4x4 = 1

We begin by choosing BV = {x1, x2} to be basic variables and NBV = {x3, x4} to
be nonbasic variables. Setting x3 = x4 = 0, we obtain the following linear system:

x1 + x2 = 3
2x1 − x2 = 1

These equations lead to the unique (feasible) basic solution: x1 = 4

3
, x2 = 1 2

3
,

x3 = 0, x4 = 0.
Next we choose BV = {x2, x3} as our basic variables and set the nonbasic variables
NBV = {x1, x4} equal to zero, i.e. x1 = x4 = 0. We have the following system:

x2 = 3
−x2 − x3 = 1

Solving the above system we obtain the (unfeasible) basic solution : x1 = 0, x2 = 3,
x3 = −4, x4 = 0. If we choose BV = {x1, x4} and NBV = {x2, x3}, we obtain the
following system of linear equations:

x1 + 2x4 = 3
2x1 + 4x4 = 1

This system is inconsistent so the variables x1, x4 cannot simultaneously be basic
variables!

Definition 2. For any linear programming problem with m constraints, two basic
feasible solutions are called adjacent if their sets of basic variables have m−1 basic
variables in common.

For example, the following two basic solutions from the above example X1 =
(x1 = 4

3
, x2 = 5

3
, x3 = 0, x4 = 0) (feasible basic solution - FBS) and X2 = (x1 =

0, x2 = 3, x3 = −4, x4 = 0) (infeasible basic solution - IBS) are adjacent.

Definition 3. Any basic solution to AAAxxx = bbb in which all the variables are non-
negative is a feasible basic solution(FBS).

Property 1. For any LPP there is a unique extreme point(corner point) of the
feasible region corresponding to each basic feasible solution. Also, there is at least
one FBS corresponding to each extreme point of the feasible region.

Theorem 1. The feasible region of any LPP is a convex set. Also, if the LPP has
an optimal solution, there must be an extreme point of the feasible region that is
optimal.

From the above facts, we see that in searching for an optimal solution to an
LPP we need only find the best basic feasible solution(largest Z - value in a max
problem or smallest Z - value in a min problem) to AAAxxx = bbb.
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3.2 THE IDEA OF THE SIMPLEX ALGORITHM

Step 1-Initialization: Find an initial Feasible Basic Solution(FBS) to the prob-
lem (this solution will be called the current FBS).

Step 2 - Optimality test: Is the current basic FBS optimal? If no, then go to
the Iteration. If yes, then stop.

Step 3 Iteration: Perform an iteration to find an adjacent FBS to the current one
that has a larger (not smaller) Z - value (for a max problem) and smaller Z
value (for a min problem). Return to Step 2 using the new FBS as the current
FBS.

There are three elements that must be determined using the simplex algorithm:

1. Finding an initial FBS.

2. Cheking if the current FBS is optimal? (Optimality test).

3. Transition from the current basic feasible solution to a better adjacent FBS.

Example Solve the following problem:

10 20 30 40

20

40

A

B

C

D
max z = 4x1 + 3x2

x1 + x2 ≤ 40

2x1 + x2 ≤ 60

x1, x2 ≥ 0

x1

x2

We convert the model into standard form by adding two slack variables s1, s2:

max z = 4x1 + 3x2

s1 +x1 +x2 = 40
s2 +2x1 +x2 = 60

x1, x2, s1, s2 ≥ 0

The above model is said to be in basic (canonical) form. We can obtain the first
FBS by setting

BV = {s1, s2}, NBV = {x1, x2}

The initial feasible basic solution is X1 = (s1 = 40, s2 = 60, x1 = 0, x2 = 0) with
value Z = 0. This FBS corresponds to the corner point A of the feasible region
ABCD. We express this model in equation form as follows:

Z −4x1 −3x2 = 0
s1 +x1 +x2 = 40

s2 +2x1 +x2 = 60
x1, x2, s1, s2 ≥ 0

(3.1)
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Row 0 of the above system is the equation corresponding to the objective function
Z − 4x1 − 3x2 = 0. There are no basic variables in the objective function.
This system of equations is represented by the simplex tableau as follows:

cB BV s1 s2 x1 x2 Solution
0 s1 1 0 1 1 40
0 s2 0 1 2 1 60

Z 0 0 −4 −3 0

The last row of the simplex tableau contains the so called optimality coeffi-
cients(except for the first and last columns) of the variables. We choose the non-
basic variable x1 with the most negative coefficient in row Z (ties may be broken
in an arbitrary fashion)- this variable is called the entering variable. We want to
introduce this variable as a basic variable in the new adjacent FBS. Since each unit
by which we increase x1 increases the value of the objective function Z by 4,(for x1

only by 3), we would like to make x1 as large as possible. We see, from the second
equation of (1), that x1 cannot be greater than x1 = 40/1 = 40 and from the third
equation of (1) we get that x1 cannot be greater than x1 = 60/2 = 30 . We choose
minimum of these values (x1 = 30). This means that basic variable s2 will be a
nonbasic variable in the new adjacent FBS. This variable is called the leaving basic
variable. The new basic variables are BV = {s1, x1}. In the simplex tableau we
add a new column at the end and element 2 in column x1(the entering variable)
and row s2 (the leaving variable) is highlighted.

cB BV s1 s2 ~x1 x2

0 s1 1 0 1 1 40 40/1 = 40

0 ~s2 0 1 2 1 60 60/2 = 30
Z 0 0 −4 −3 0

Now we solve the system of equations (3.1) with basic variables s1, x1. The process
is based on Gauss-Jordan row operations. The column of the entering variable is
known as the pivot column and the row of the leaving variable as the pivot row. The
intersection of the pivot column and pivot row is the pivot element (element 2 ).
The Gauss-Jordan computations needed to produce the new basic solution include
two types:

1. Pivot row

a. Replace the leaving variable in the BV column with the entering variable.

b. New pivot row = Current pivot row ÷ Pivot element

2. All the other rows, including Z:
New row = (Current row) - (Its pivot column coefficient)× (New pivot row)

The new (second) simplex tableau is:

cB BV s1 s2 x1 x2

0 s1 1 −0.5 0 0.5 10
4 x1 0 0.5 1 0.5 30

z 0 2 0 −1 120

The corresponding basic feasible solution is: X2 = (s1 = 10, x1 = 30, s2 = 0,
x2 = 0) with the value of objective function Z = 120. This solution corresponds to
the extreme (corner point) B of the feasible region. The solution X2 is not optimal -
the coefficient of the variable x2 in the Z- row is negative (so x2 will be the entering
variable in the next iteration).
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cB BV s1 s2 x1 ~x2

0 ~s1 1 −0.5 0 0.5 10 10/0.5 = 20
4 x1 0 0.5 1 0.5 30 30/0.5 = 60

z 0 2 0 −1 120

So we have obtained the entering variable x2 and the leaving variable s1. The new
basic variables are BV = {x2, x1}. We use the Gauss-Jordan row operations with

the pivot element 0.5 . These computations produce the following simplex tableau:

cB BV s1 s2 x1 x2

3 x2 2 −1 0 1 20
4 x1 −1 1 1 0 20

z 2 1 0 0 140

Now we have the corresponding FBS X3 = (x2 = 20, x1 = 20, s1 = 0, s2 = 0) with
Z = 140. We find that this solution is optimal, because none of the coefficients
in row-Z is negative, so the algorithm is finished. The feasible basic solution X3

corresponds to the extreme point C.

3.3 UNBOUNDED SOLUTION

In some linear programming problems, the values of some variables may be in-
creased indefinitely without violating any of the constraints - meaning that the
feasible region is unbounded. As a result, the Z value may increase (maximization
case) or decrease (minimization case) indefinitely.The following example shows how
unboundedness can be recognized in the simplex tableau.
Example

max z = 2x1 + x2 + x3

s1 +3x1 − x2 = 60
s2 +x1 − 2x2 + 2x3 = 10

x1, x2, x3, s1, s2 ≥ 0

The first simplex tableau (BV={s1, s2})is as follows:

cB BV s1 s2 x1 x2 x3 FBS
0 s1 1 0 3 −1 0 60
0 s2 0 1 1 −2 2 10

Z 0 0 −2 −1 −1 0

We see that both x1 and x2 have negative Z- row coefficients. Hence increasing
either one will improve the solution. If we take x2 as the entering variable, we see
that all the constraint coefficients in the x2 column are negative or zero. This means
that there is no leaving variable and that x2 can be increased indefinitely without
violating any of the constraints. Because each unit increase in x2 will increase Z
by 1, an infinite increase in x2 leads to an infinite increase in Z.

Remark If there exists a variable with a negative coefficient in the Z- row of the
simplex tableau and all the constraint coefficients in this variable’s column are neg-
ative or zero then the objective function of the LPP is unbounded.
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3.4 THE SIMPLEX ALGORITHM

1. The LPP must be first expressed in basic (canonical) form:

max(min)Z = c1x1 + c2x2 + · · ·+ cnxn

x1 +a1m+1xm+1 + · · ·+ a1nxn = b1
x2 +a2m+1xm+1 + · · ·+ a2nxn = b2

. . .
xm +a2m+1xm+1 + · · ·+ a2nxn = bm

xi ≥ 0, i = 1, . . . , n,

where the variables x1, . . . , xm are basic variables (BV = {x1, . . . , xm}), the
variables xm+1, xm+2, . . . , xn are nonbasic variable (NBV = {xm+1, xm+2, . . . , xn},)
and bi ≥ 0, i = 1, . . .m(m < n).

2. The starting simplex tableau is:

cB BV x1 x2 . . . xm xm+1 . . . xn Solution
c1 x1 1 0 . . . 0 a1m+1 . . . a1n b1
c2 x2 0 1 . . . 0 a2m+1 . . . a2n b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cm xm 0 0 . . . 1 amm+1 . . . amn bm

Z 0 0 . . . 0 −cm+1 . . . −cn b0

,

where:

ck =

m
∑

i=1

ciaik − ck, k = 1, . . . , n (3.2)

b0 =
m
∑

i=1

cibi (3.3)

The numbers ci are called the optimality coefficients.

3. If all the optimality coefficients c1, . . . , cn (all the Z- row coefficients) are
nonnegative then STOP - the current basic solution is an optimal solution.
Else, go to step 4.

4. If there exists a nonbasic variable with a negative optimality coefficient and
all the coefficients of the column of the simplex tableau for this variable are
nonpositive, then STOP - the objective function is unbounded. Else, go to
step 5.

5. Select the entering variable xp. In a maximization (minimization) problem
this is the nonbasic variable having the most negative(positive) optimality
coefficient (coefficient in the Z - row). Ties in this minimum(maximum) op-
eration are broken arbitrarily. Select the leaving variable xr. This is the basic
variable xr for which the following condition is satisfied:

br
arp

= min
aip>0

{

bi
aip

}

The variable xr will be a nonbasic variable in the next FBS .

6. Apply the Gauss-Jordan row operations with pivot element arp. Go back to
step 3.



24CHAPTER 3. SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEXMETHOD

Example. Solve the following problem using the simplex algorithm:

max z = 2x1 + x2 + x3

3x1 + x2 + x3 ≤ 60
x1 − x2 + 2x3 ≤ 10
x1 + x2 − x3 ≤ 20
x1, x2, x3 ≥ 0

First we convert the problem into standard form and canonical form:

max z = 2x1 + x2 + x3

s1 +3x1 + x2 + x3 = 60
s2 +x1 − x2 + 2x3 = 10

s3 +x1 + x2 − x3 = 20
x1, x2, x3, s1, s2, s3 ≥ 0

Next, we construct the first simplex tableau:

cB BV s1 s2 s3 x1 x2 x3 Solution
0 s1 1 0 0 3 1 1 60
0 s2 0 1 0 1 −1 2 10
0 s3 0 0 1 1 1 −1 20

Z 0 0 0 −2 −1 −1 0

Remark It is easy to compute the optimality coefficients using formula(3.2). For
example, for the variable x1 we obtain : c1 = 0 ∗ 3 + 0 ∗ 1+ 0 ∗ 1− 2 = −2. If there
are no basic variables in the objective function, then we have ci = −ci, i = 1, . . . , n
in the first simplex tableau.

cB BV s1 s2 s3 ~x1 x2 x3

0 s1 1 0 0 3 1 1 60 60/3 = 20

0 ~s2 0 1 0 1 −1 2 10 10/1 = 10
0 s3 0 0 1 1 1 −1 20 20/1 = 20

Z 0 0 0 −2 −1 −1 0

The entering variable and leaving variable are x1 and s2 respectively, so taking the
pivot element to be 1 , the new simplex tableau can be computed by using the
Gauss-Jordan row operations:

cB BV s1 s2 s3 x1 x2 x3 Solution
0 s1 1 −3 0 0 4 −5 30
2 x1 0 1 0 1 −1 2 10
0 s3 0 −1 1 0 2 −3 10

Z 0 2 0 0 −3 3 20

It is easy to compute the Z - row coefficients using formula (3.2). For example, the
x2 optimality coefficient is computed as follows: 0 ∗ 4 + 2 ∗ (−1) + 0 ∗ 2− 1 = −3.
The value of the objective function (b0) is: 0 ∗ 30 + 2 ∗ 10 + 0 ∗ 10 = 20. The next
iterations are given by the following simplex tableaux:

cB BV s1 s2 s3 x1 ~x2 x3

0 s1 1 −3 0 0 4 −5 30 30/4 = 7.5
2 x1 0 1 0 1 −1 2 10 −

0 ~s3 0 −1 1 0 2 −3 10 10/2 = 5
Z 0 2 0 0 −3 3 20
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cB BV s1 s2 s3 x1 x2 ~x3

0 ~s1 1 −1 −2 0 0 1 10 10/1 = 10
2 x1 0 0.5 0.5 1 0 0.5 15 15/0.5 = 30
1 x2 0 −0.5 0.5 0 1 −1.5 5 −

Z 0 −0.5 0.5 0 0 −1.5 35

cB BV s1 ~s2 s3 x1 x2 x3

1 x3 1 −1 −2 0 0 1 10 −

2 ~x1 −0.5 1 1.5 1 0 0 10 10/1 = 10
1 x2 1.5 −2 −2.5 0 1 0 20 −

Z 1.5 −1 −1.5 0 0 0 50

cB BV s1 ~s2 s3 x1 x2 x3 Solution
1 x3 0.5 0 −0.5 1 0 1 20
0 s2 −0.5 1 1.5 1 0 0 10
1 x2 0.5 0 0.5 2 1 0 40

Z 1 0 0 1 0 0 60

The last simplex tableau contains the optimal solution: x3 = 20, s2 = 10, x2 = 40,
x1 = 0, s1 = 0, s2 = 0 with the optimal value of objective function Z = 60. This
tableau is called the optimal tableau.

3.5 MULTIPLE OPTIMAL SOLUTIONS

If there is a nonbasic variable which has an optimality coefficient equal to zero in
the optimal simplex tableau then multiple optima exist.

Example.

10 20 30 40 50 60 70 80

20

40

60

80

100

z=160

z=0

z=40

(20,60)

(0,80)

maxZ = 2x1 + 2x2

2x1 + x2 ≤ 100
x1 + x2 ≤ 80
x1 ≤ 40
x1 ≥ 0
x2 ≥ 0

x1

x2
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One optimal simplex tableau is given below:

cB BV s1 s2 s3 ~x1 x2

0 ~s1 1 −1 0 1 0 20 20/1 = 20
2 x2 0 1 0 1 1 80 80/1 = 80
0 s3 0 0 1 1 0 40 40/1 = 40

Z 0 2 0 0 0 160

The associated optimal basic solution is Xopt = (x1, x2, s1, s2, s3) = (0, 80, 20, 0, 40)
with Z = 169. This optimal FBS corresponds to the extreme (corner point) point
X1 = (0, 80) on the picture. The nonbasic variable x1 has a zero coefficient in
the Z-row of this optimal simplex tableau. Taking the variable x1 as the entering
variable and carrying out a simplex iteration (with leaving variable s1), we obtain
the following optimal simplex tableau:

cB BV s1 s2 s3 x1 x2 Solution
2 x1 1 −1 0 1 0 20
2 x2 −1 2 0 0 1 60
0 s3 −1 1 1 0 0 20

Z 0 2 0 0 0 160

This iteration gives us a new optimal feasible basic solution x1 = 20, x2 = 60,
s3 = 20, s1 = s2 = 0 and Z = 160 which corresponds to the point X2 = (20, 60).
The simplex method determines only two optimal basic solutions (corner points).
Each optimal solution X = (x1, x2)can be determined as a linear combination of
points X1 and X2: X = t ∗X1 + (1− t) ∗X2.
x1 = 0t+ 20(1− t),
x2 = 80t+ 60(1− t), t ∈ [0, 1].

3.6 USING THE SIMPLEX ALGORITHM TO
SOLVE MINIMIZATION PROBLEMS

Simple modifications are needed to solve a minimization problem: If all the non-
basic variables in the Z- row of the simplex tableau have nonpositive coefficients,
then the current FBS is optimal. If any nonbasic variable in the Z - row has the
positive coefficient, choose the variable with the most positive coefficient in the Z -
row of the simplex tableau as the entering variable. Another way is to multiply the
objective function equation by (-1) and solve the resulting maximization problem

Example. We illustrate the method by solving the following linear problem:

minZ = −3x1 + x2

3x1 + x2 ≤ 6
−x1 + 2x2 ≤ 1
x1, x2 ≥ 0

We convert the problem to standard and canonical form:

minZ = −3x1 + x2

s1 +3x1 + x2 = 6
s2 −x1 + 2x2 = 1

x1, x2 ≥ 0



3.6. SOLVING MINIMIZATION PROBLEMS 27

cB BV s1 s2 ~x1 x2

0 ~s1 1 0 3 1 6 6/3 = 2
0 s2 0 1 −1 2 1 −

Z 0 0 3 −1 0

cB BV s1 s2 ~x1 x2

3 x1 1/3 0 1 1/3 2
0 s2 1/3 1 0 7/3 3

Z −1 0 0 −2 −6

The last simplex tableau is optimal: all coefficients of the Z row are nonpositive.
The optimal solution is: x1 = 2, x2 = 0, s1 = 0, s2 = 3. The minimum value of the
objective function value is Z = −6.
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Chapter 4

Artificial Starting Solutions

A linear programming problem in which all the constraints are (≤) with nonnega-
tive right-hand sides gives an initial ”all slack” starting basic feasible solution with
all the slack variables being basic. Problems with (=) and/or (≥) constraints need
to use artificial variables at the beginning of the simplex algorithm. There are two
methods: the M-method(also called the Big M-method) and the Two-Phase method.

4.1 THE BIG M METHOD

Example. Solve the problem:

maxZ = 2x1 + x2 − 3x3

x1 + x2 + x3 ≥ 6
2x1 + x2 = 14
x1, x2, x3 ≥ 0

After converting to standard form, we have:

maxZ = 2x1 + x2 − 3x3

x1 + x2 + x3 − s1 = 6
2x1 + x2 = 14
x1, x2, x3, s1 ≥ 0

The above system of equations is not in basic form - not all the equations contain
a basic variable. If equation i does not have a slack variable (or a variable that
can play such a role), an artificial variable, ai, is added to form a starting solution
similar to the all-slack basic solution. In the example considered, we add two
artificial variables a1 and a2. However, because the artificial variables are not part
of the original linear model, they are assigned a very high penalty in the objective
function, thus forcing them (eventually) to equal zero in the optimal solution.
Penalty Rule for Artificial Variables.
GivenM , a sufficiently large positive value (mathematically,M →∞), the objective
coefficient of an artificial variable represents an appropriate penalty if:

Coefficient of an artificial variable in the objective function =

{

−M, in maximization problems
M, in minimization problems.

So we have:

29
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maxZ = 2x1 + x2 − 3x3 −Ma1 −Ma2
a1 +x1 + x2 + x3 − s1 = 6

a2 +2x1 + x2 = 14
x1, x2, x3, s1, a1, a2 ≥ 0

We construct the first simplex tableau using formula (3.2)).

cB BV a1 a2 ~x1 x2 x3 s1 Solution

−M ~a1 1 0 1 1 1 −1 6 6/1 = 6
−M a2 0 1 2 1 0 0 14 14/2 = 7

Z 0 0 −3M − 2 −2M − 1 −M + 3 M −20M

Continuing with the simplex computations, we will obtain the following simplex
tableaux:

cB BV a1 a2 x1 x2 x3 ~s1 Solution
2 x1 1 0 1 1 1 −1 6 −

−M ~a2 −2 1 0 −1 −2 2 2 2/2 = 1
Z 3M + 2 0 0 M + 1 2M − 1 −2M − 2 −2M + 12

cB BV a1 a2 x1 x2 x3 s1 Solution
2 x1 0 1

2
1 1

2
0 0 7

0 s1 −1 1

2
0 − 1

2
−1 1 1

Z M M + 1 0 0 3 0 14

The last tableau is optimal. The optimal solution is: x1 = 7, s1 = 1, x2 = x3 = 0
with Z = 14.

Remark The use of the penaltyM will not force an artificial variable to equal zero
in the final simplex iteration if the LPP does not have a feasible solution (i.e. the
constraints are not consistent). In this case, the final simplex tableau will include
at least one artificial variable with a positive value.

Example. Solve the problem :

maxZ = 2x1 + 2x2

6x1 + 4x2 ≤ 24
x1 ≥ 5
x1, x2 ≥ 0

The standard form is:
maxZ = 2x1 + 2x2

s1 +6x1 + 4x2 = 24
x1 − s2 = 5

x1, x2, s1, s2 ≥ 0

We use the Big M method (it is enough to add only one artificial variable ):

maxZ = 2x1 + 2x2 −Ma2
s1 +6x1 + 4x2 = 24

a2 +x1 − s2 = 5
x1, x2, s1, s2 ≥ 0

cB BV s1 a2 ~x1 x2 s2 Solution

0 ~s1 1 0 6 4 0 24 24/6 = 4
−M a2 0 1 1 0 −1 5 5/1 = 5

Z 0 0 −M − 2 −2 M −5M
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cB BV s1 a2 x1 x2 s2 Solution
2 x1

1

6
0 1 2

3
0 4

−M a2 − 1

6
1 0 − 2

3
−1 1

Z 1

6
M + 1

3
0 0 2

3
M − 2

3
M −M + 8

The last simplex tableau is optimal - all the Z- row coefficients are nonnegative.
The artificial variable a2 is a basic variable with positive value, so the problem is
not consistent - it has no feasible solutions.

4.2 THE TWO-PHASE METHOD

This method solves a linear programming problem in two phases: Phase I attempts
to find a starting feasible solution and, if one is found, Phase II is used to solve the
original problem.

Phase I Put the problem in equation form, and add the necessary artificial vari-
ables to the constraints to get a starting feasible basic solution. Next, find a
basic solution of the resulting equations that, regardless of whether the prob-
lem is to minimize or maximize, always minimizes the sum of the artificial
variables. If the minimum value of this sum is positive, the problem has no
feasible solution, which ends the process. Otherwise, proceed to Phase II.

Phase II Use the feasible solution from Phase I as a starting feasible basic solution
for the original problem.

We use this method to solve the following problem:

maxZ = 4x1 + x2

3x1 + x2 = 3
4x1 + 3x2 ≥ 6
x1 + 2x2 ≤ 4
x1, x2 ≥ 0

Using s2 as a surplus in the second constraint and s3 as a slack variable in the third
constraint, the standard form of the problem is:

maxZ = 4x1 + x2

3x1 + x2 = 3
4x1 + 3x2 − s2 = 6
x1 + 2x2 + s3 = 4
x1, x2, s2, s3 ≥ 0

The third equation has a basic variable (s3), but the first and second do not. Thus
we add the artificial variables a1 and a2 and we minimize the sum of the artificial
variables a1 + a2. The resulting model is:

minZa = a1 + a2
3x1 + x2 +a1 = 3
4x1 + 3x2 −s2 +a2 = 6
x1 + 2x2 +s3 = 4
x1, x2, s2, s3, a1, a2 ≥ 0
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Taking a1, a2, s3 as basic variables and using formula (2) to compute the coefficients
of the Za - row, we obtain the first simplex tableau:

cB BV x1 x2 s2 a1 a2 s3 Solution
1 a1 3 1 0 1 0 0 3
1 a2 4 3 −1 0 1 0 6
0 s3 1 2 0 0 0 1 4

Za 7 4 −1 0 0 0 9

Now we use the simplex algorithm for a minimization problem and obtain (after
two iterations) the following optimal tableau:

cB BV x1 x2 s2 a1 a2 s3 Solution
0 x1 1 0 1

5

3

5
− 1

5
0 3

5

0 x2 0 1 − 3

5
− 4

5

3

5
0 6

5

0 s3 0 0 1 1 −1 1 1
Za 0 0 0 −1 −1 0 0

Because the minimum value of Za = 0, Phase I produces the basic feasible solution
x1 = 3

5
, x2 = 6

5
, s3 = 1. We can eliminate the columns for a1 and a2 from the

tableau and move to Phase II.
Phase II After deleting the artificial columns, we write the original problem as

maxZ = 4x1 + x2

x1 + 1

5
s2 = 3

5

x2 − 3

5
s2 = 6

5

s2 +s3 = 1
x1, x2, s2, s3 ≥ 0

Now we can begin the simplex algorithm with the following simplex tableau:

cB BV x1 x2 s2 s3 Solution
4 x1 1 0 1

5
0 3

5

1 x2 0 1 − 3

5
0 6

5

0 s2 0 0 1 1 1
Z 0 0 1

5
0 18

5

Because we are maximizing, this is the optimal tableau. The optimal solution is
x1 = 3

5
, x2 = 6

5
and Z = 18

5
.

Remark All commercial packages use the two-phase method to solve linear pro-
gramming problems.

The removal of the artificial variables and their columns at the end of Phase I
can take place only when they are all nonbasic. If one or more artificial variables
are basic (but equal to zero) at the end of Phase I, then the following additional
steps must be undertaken to remove them prior the start of Phase II.

Step 1. Select an artificial variable equal to zero to leave the set of basic variables
(choosing the leaving variable) and designate its row as the pivot row. The
entering variable can be any nonbasic variable with a nonzero(positive or neg-
ative) coefficient in the pivot row. Perform the associated simplex iteration.

Step 2. Remove the column of the artificial variable that has just left from the
tableau. If all the artificial variables equal to zero have been removed, go to
Phase II. Otherwise, go back to Step 1.
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4.3 SENSITIVITY ANALYSIS

Sensitivity analysis is concerned with how changes in the parameters of the linear
programming model affect the optimal solution.
Example. Let us consider the following problem (described in basic form) of man-
ufacturing two products W1 and W2 from two raw materials S1, S2:

maxZ = 3x1 + 2x2 [Maximizing the revenue]
s1 +2x1 + x2 = 100 [Limit on raw material S1]

s2 +x1 + x2 = 80 [Limit on raw material S2]
s3 +x1 = 40 [Demand for W1]

x1, x2, s1, s2, s3 ≥ 0

The optimal solution of the problem is x1 = 20, x2 = 60 with Z = 180. We want
to determine the range of values of a parameter (e.g. a coefficient in the objective
function - the unit price of product W1 in our example ) over which the optimal
solution remains unchanged. Solving this problem using the simplex algorithm, we
obtain the following optimal tableau:

cB BV s1 s2 s3 x1 x2 Solution
3 x1 1 -1 0 1 0 20
2 x2 -1 2 0 0 1 60
0 s3 -1 1 1 0 0 20

Z 1 1 0 0 0 180

Let us assume that the unit price of W1 equals 3 + δ. Then we have:

cB BV s1 s2 s3 x1 x2 Solution
3 + δ x1 1 −1 0 1 0 20
2 x2 −1 2 0 0 1 60
0 s3 −1 1 1 0 0 20

Z 1 + δ −δ + 1 0 0 0 180

The optimal solution remains optimal as long as all the Z− row coefficients are
nonnegative, so we get:

{

1 + δ ≥ 0
−δ + 1 ≥ 0

Solving this system of inequalities we obtain δ ∈ [−1, 1]. Thus the optimal solution
will remain optimal when the price of W1 belongs to the interval [2,4].

Now we examine how the optimal solution to the LPP changes if the right-hand
side of a constraint is changed. For example, we consider the constraint for raw
material S1 (coefficient b1 = 100). Changing bi will leave the Z - row of the simplex
tableau unchanged, but will change the the optimal solution. If at least one variable
becomes negative, the current solution is no longer feasible. So we look for the values
of δ for which the following system of equalities is consistent:















2x1 + x2 = 100 + δ
x1 + x2 = 80
s3 + x1 = 40
x1, x2, s1, s2, s3 ≥ 0

We describe this system in matrix form:




2 1 0
1 1 0
1 0 1









x1

x2

s3



 =





100 + δ
80
40
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Multiplying both sides of these equations by the inverse to the matrix of coefficients,
we get:





x1

x2

s3



 =





2 1 0
1 1 0
1 0 1





−1 



100 + δ
80
40



 ≥





0
0
0





The inverse matrix we can be obtained from the simplex tableau. It consists of
the columns in the optimal tableau that correspond to the initial basic variables
BV = {s1, s2, s3}(taken in the same order):





2 1 0
1 1 0
1 0 1





−1

=





1 −1 0
−1 2 0
−1 1 1





Hence, we get:




1 −1 0
−1 2 0
−1 1 1









100 + δ
80
40



 ≥





0
0
0





For the current set of basic variables (basis) to remain optimal, we require that the
following system of inequalities holds:

20 + δ ≥ 0
60− δ ≥ 0
20− δ ≥ 0

The set of basic variables at the optimal solution will be (x1, x2, s3) as long as
δ ∈ [−20, 20] i.e. if between 80 and 120 units of row material S1 (b1 ∈ [80, 120],
where the current amount is b1 = 100) are available.
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Dual Problem

5.1 FINDING THE DUAL OF A LINEAR PRO-
GRAMMING PROBLEM

Associated with any linear programming problem, there is another linear problem,
called the dual problem (Dual in short). Now we explain how to find the dual prob-
lem to a given LPP, we discuss the economic interpretation of the dual problem and
the relation that exists between an LPP (called the Primal) and its dual problem.
We consider the LPP in normal (canonical) form :

maxZ = c1x1 + c2x2 + · · ·+ cnxn

a11x1 + a12x2 + · · · + a1nxn ≤ b1
a21x1 + a22x2 + · · · + a2nxn ≤ b2
...

...
...

am1x1 + am2x2 + · · · + amnxn ≤ bm

xj ≥ 0 (j = 1, 2, . . . , n)

The original problem is called the primal. The dual problem is defined as follows:

minW = b1y1 + b2y2 + · · ·+ bmym

a11y1 + a21y2 + · · · + am1ym ≥ c1
a12y1 + a22y2 + · · · + am2ym ≥ c2
...

...
...

a1ny1 + a2ny2 + · · · + amnym ≥ cn

yi ≥ 0 (i = 1, 2, . . . ,m)

We illustrate the construction of the dual problem from the primal problem in table
5.1
Example The Company FURNITURE manufactures tables and chairs. A table
sells for $160, and a chair sells for $200. The demand for tables and chairs is
unlimited. The manufacture of each type of furniture requires labor, lumber, and
inventory space. The amount of each resource needed to make tables and chairs
and the daily limits of available resources is given in the following table:

Resources needed
Resource Table Chair Amount of resource available(hours)
Labor(hours) 2 4 40
Lumber((feet)3) 18 18 216
Inventory space((feet)2) 24 12 240

35
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Table 5.1: Construction of the Dual from the Primal

maxZ
minW (x1 ≥ 0) (x2 ≥ 0) · · · (xn ≥ 0)

x1 x2 xn

(y1 ≥ 0) y1 a11 a12 · · · a1n ≤ b1
(y2 ≥ 0) y2 a21 a22 · · · a2n ≤ b2
...

...
...

...
...

...
(ym ≥ 0) ym am1 am2 · · · amn ≤ bm

≥ c1 ≥ c2 ≥ cn

FURNITURE wants to maximize total revenue.
Primal problem:

max z = 160x1 + 200x2

2x1 + 4x2 ≤ 40

18x1 + 18x2 ≤ 216

24x1 + 12x2 ≤ 240

x1, x2 ≥ 0.

Dual problem

minw = 40y1 + 216y2 + 240y3

2y1 + 18y2 + 24y3 ≥ 160

4y1 + 18y2 + 12y3 ≥ 200

y1, y2, y3 ≥ 0.

5.1.1 ECONOMIC INTERPRETATION OF THE DUAL PROB-
LEM

Suppose there is an entrpreneur who wants to purchase all of FURNITURE’s re-
sourses i.e. 40 hours of labor, 210 (feet)3 of lumber and 240(feet)2 of inventory
space. Then he must determine the price he is willing to pay for a unit of each of
FURNITURE’s resources. Let y1, y2 and y3 be the price for one hour of labor,
one cubic feet of lumber and one square feet of inventory space. We show that the
prices of resources should be determined by solving the dual problem. The total
price the entrepreneur must pay for the resources is 40y1 +216y2 +240y3 and since
he wishes to minimize the cost of purchasing the resources, he wants to:

minW = 40y1 + 216y2 + 240y3.

But he must be willing to pay enough to induce FURNITURE to sell its resources.
For example, he must offer FURNITURE at least $160 for a combination of re-
sources that includes 2 hours of labor, 18 cubic feet of lumber and 24 square feet of
inventory space, because FURNITURE could use these resources to manufacture a
table that can be sold for $160. Since he is offers 2y1+18y2+24y3 for the resources
used to produce a table, he must choose y1, y2, y3 to satisfy

2y1 + 18y2 + 24y3 ≥ 160.

Similar reasoning applied to the resources required for a chair gives:

4y1 + 18y2 + 12y3 ≥ 200.
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The sign restrictions y1, y2, y3 ≥ 0 must also hold. So we see that the solution to the
dual of Furnitures’s problem yields prices for labor, lumber and inventory space.
Finding the dual problem to any LPP - An Example

max z = 2x1 + x2 minw = 2y1 + 3y2 + y3
x1 + x2 = 2 ←→ y1 - Unrestricted
2x1 − x2 ≥ 3 ←→ y2 ≤ 0
x1 − x2 ≤ 1 ←→ y3 ≥ 0

x1 ≥ 0 ←→ y1 + 2y2 + y3 ≥ 2
x2 − Unrestricted ←→ y1 − y2 − y3 = 1.

The general conclusion from the example above is that the variables and constraints
in the primal and dual problems are defined by the rules in the following table:

Maximization problem Minimization problem
Constraints V ariables

≥ ↔ ≤ 0
≤ ↔ ≥ 0
= ↔ Unrestricted

V ariables Constraints
≥ 0 ↔ ≥
≤ 0 ↔ ≤

Unrestricted =

Table 5.2: Rules for constructing the Dual Problem

5.1.2 PRIMAL-DUAL RELATIONSHIPS

Now the key relationships between the primal and dual problems will be described:

Theorem 2. The dual of the dual problem yields the original primal problem.

Theorem 3 (Weak duality property). If we choose any feasible solution to the
primal and any feasible solution to the dual, the W− value for the feasible dual
solution will be at least as large as the Z− value for the feasible primal solution. Let
x = [x1, x2, . . . , xn]

T be any feasible solution to the primal and y = [y1, y2, . . . , ym]
be any feasible solution to the dual. Then

(Z − value for x) ≤ (W − value for y)

Two properties result from this theorem:

Property 2. If x̄ = (x̄1, x̄2, . . . , x̄n) and ȳ = (ȳ1, ȳ2, . . . , ȳm) are feasible solutions
of the primal problem and dual problem respectively such that Z = c1x̄1 + c2x̄2 +
. . .+ cnx̄n = b1ȳ1 + b2ȳ2 + . . .+ bmȳm = W , then x̄ must be an optimal solution to
the primal problem and ȳ must be an optimal solution to the dual problem.

Property 3. If the primal(dual) is unbounded, then the dual(primal) problem is
infeasible.

Theorem 4 (Duality theorem). The following are the only possible relations be-
tween the primal and dual problems:

1. If one problem has feasible solutions and a bounded objective function (and so
has the optimal solution), then so does the other problem.

2. If one problem has feasible solutions and an unbounded objective function(and
so no optimal solution), then the other problem has no feasible solutions.
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3. If one problem has no feasible solutions, then the other problem has either no
feasible solution or an unbounded objective function.

Now we can give an interpretation of the dual problem to the maximization
problem. We know that for optimal solutions x̄ of the primal problem and ȳ of the
dual problem the following equality holds:

Z = c1x̄1 + c2x̄2 + . . .+ cnx̄n = b1ȳ1 + b2ȳ2 + . . .+ bmȳm = W

So each biȳi can be interpreted as the contribution to profit by having bi units of
resource i available in the primal problem. Thus, the optimal value of the dual
variable ȳi (it is called its shadow price) can be interpreted as the contribution to
profit by a unit of resource i(i = 1, 2, . . . ,m).

5.2 READING THE OPTIMAL SOLUTION TO
THE DUAL FROM THE Z-ROW OF THE
OPTIMAL SIMPLEX TABLEAU IF THE PRI-
MAL IS A MAX PROBLEM

After solving the primal problem using the simplex method, we can read the optimal
dual solution from the optimal simplex tableau. Let us consider the LPP for the
firm FURNITURE. The optimal simplex tableau is as follows:

Table 5.3: Optimal simplex tableau
s1 s2 s3 x1 x2

200 x2
1

2
− 1

18
0 0 1 8

160 x1 − 1

2

1

9
0 1 0 4

0 s3 6 -2 1 0 0 48
Z 20 20

3
0 0 0 2240

The basic variables are ZB = {x2, x1, s3} and the basis is B =





4 2 0
18 18 0
12 24 1



.

The inverse matrix to B is: B
−1 =





1

2
− 1

18
0

− 1

2

1

9
0

6 −2 1



 and columns s1, s2, s3 of

the optimal simplex tableau contain this matrix. The optimal solution to the dual
problem (y1, y2, y3) can be computed using the matrix B

−1 as follows:

(y1, y2, y3) = cBB
−1 = (200, 160, 0)





1

2
− 1

18
0

− 1

2

1

9
0

6 −2 1



 = (20,
20

3
, 0).

where the vector cB contains the coefficients of the objective function corresponding
to the basic variables. The optimal to the dual is given by the coefficients of variables
s1, s2, s3 in the Z− row in the optimal simplex tableau. If the primal problem is of
any form , then the optimal solution to the dual may be read from the Z− row of
optimal simplex tableau by using the following rules:

• The optimal value of dual variable yi if constraint i is of the type ≤ equals
the coefficient of si in the Z− row of the optimal simplex tableau.

• The optimal value of dual variable yi if constraint i is of the type ≥ is the
negative of coefficient of ei in the Z− row of the optimal simplex tableau),
where ei is a surplus variable.
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• The optimal value of dual variable yi if constraint i is an equality = (coefficient
of ai in the Z− row of the optimal simplex tableau)-M, where ai is an artificial
variable.

Example.

max z = 3x1 + 2x2 + 5x5

x1 + 3x2 + 2x3 ≤ 15

2x2 − x3 ≥ 5

2x1 + x2 − 5x3 = 10

x1, x2, x3 ≥ 0.

To solve this problem we use the M method:

maxZ = 3x1 + 2x2 + 5x5 −Ma2 −Ma3

x1 + 3x2 + 2x3 + s1 = 15

2x2 − x3 − e2 + a2 = 5

2x1 + x2 − 5x3 + a3 = 10

x1, x2, x3, s1, a2, a3 ≥ 0.

After carrying out a few iterations we obtain the optimal simplex tableau:

Table 5.4: M-method, the last simplex tableau

x1 x2 x3 s1 e2 a2 a3
5 x3 0 0 1 4

23

5

23
− 5

23
− 2

23

15

23

2 x2 0 1 0 2

23
− 9

23

9

23
− 1

23

65

23

3 x1 1 0 0 9

23

17

23
− 17

23

7

23

120

23

Z 0 0 0 51

23

58

23
M − 58

23
M + 9

23

565

23

The dual problem has the following form:

minW = 15y1 + 5y2 + 10y3

y1 + 2y3 ≥ 3

3y1 + 2y2 + y3 ≥ 2

2y1 − y2 − 5y3 ≥ 5

y1 ≥ 0, y2 ≤ 0, y3 − Unrestricted.

Reading the optimal solution to the dual from the optimal simplex tableau we get:

• The first constraint is a ’≤’ inequality, so y1 = 51

23
(coefficient of s1 in the Z−

row).

• The second constraint is a ’≥’ inequality, so y2 = − 58

23
(- coefficient of e2 in

the Z− row).

• The third constraint is an equality, so y3 = 9

23
(coefficient of a3 in the Z−

row minus M).

The optimal value of the objective function of the dual problem is W = 15 51

23
+

5(− 58

23
) + 10 9

23
= 565

23
and equals the optimal value of the objective function in the

primal problem.
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Chapter 6

Integer Programming (IP)

A linear programming problem in which all the variables are required to be integers
is called an integer programming problem (IPP). Integer programming is also
called discrete programming.
Integer Programming Problem

max(min)z = c1x1 + c2x2 + · · ·+ cnxn [Objective function]
a11x1 + a12x2 + · · ·+ a1nxn ≤ (≥,=)b1 [Constraint 1]
. . .
am1x1 + am2x2 + · · ·+ amnxn ≤ (≥,=)bm [Constraint m]
x1 ≥ 0, . . . , xr ≥ 0, r ≤ n [Sign restrictions]
xi − integer, i = 1, . . . , n

If only some of the variables required to have integer values, this model is referred
to as mixed integer programming (MIP). When distinguishing the all-integer
problem from this mixed case, we call the former pure integer programming.
There are problems involving a number of interrelated ”‘yes-or-no”’ decisions. In
such decisions, the only possible choices are yes and no. We can represent such
decisions by decision variables that are restricted to just two values, say 0 and
1(zero-one). Thus, the jth yes-or-no decision would be represented by, say, xj such
that

xj =

{

1 if decision j is yes
0 if decision j is no.

Such variables are called binary variables(or 0-1 variables). Problems that contain
only binary (0-1)variables are called Binary Integer Programming Problems (BIP).

max(min)z = c1x1 + c2x2 + · · ·+ cnxn [Objective function]
a11x1 + a12x2 + · · ·+ a1nxn ≤ (≥,=)b1 [Constraint 1]
. . .
am1x1 + am2x2 + · · ·+ amnxn ≤ (≥,=)bm [Constraint m]
xi ∈ {0, 1} , i = 1, . . . , n [0-1 or binary variables.]

6.1 FORMULATING INTEGER PROGRAMMING
PROBLEMS

Example 1. The Cutting Stock(or Trim Loss) Problem. A sawmill produces
standard boards which are 10 inches wide and l inches long. It receives orders for 100
boards which are 2 inches wide, 150 boards which are 3 inches wide and 80 boards
which are 4 inches wide. All these boards are required to be l inches in length. The
sawmill wishes to determine how to meet these orders so as to minimize total waste.

41
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Waste is defined as any leftover portion of a standard board which cannot be used to
meet demand. There are two sources of waste: trim loss and surplus. For example,
if a standard board is split into three 3-inch boards, there will be leftovers (trim loss)
having a width of 1 inch. Note that this cutting pattern yields three 3-inch boards
from each standard board which is cut. Because different cutting patterns can create
multiple boards out of standard boards, there is a possibility that a surplus or excess
number will be cut. For example, if 155 3-inch boards result from the cutting process
and only 150 are required, then the surplus waste is (155-150)×3. All the different
ways (patterns) in which a standard board can be split are given in the table:

Pattern Number of 4-inch Number of 3-inch Number of 2-inch Waste
boards boards boards (in inches)

1 2 0 1 0
2 1 2 0 0
3 1 1 1 1
4 1 0 3 0
5 0 3 0 1
6 0 2 2 0
7 0 1 3 1
8 0 0 5 0

Decision variables:

• xi = number of standard boards which are to be split according to pattern i,
where i = 1, . . . , 8,

• y1 = number of excess 4-inch boards, y2 = number of excess 3-inch boards, y3
=number of excess 2-inch boards.

Model:

x3 + x5 + x7 + 4y1 + 3y2 + 2y3 → min
2x1 + x2 + x3 + x4 − y1 = 80 [4-inch boards]
2x2 + x3 + 3x5 + 2x6 + x7 − y2 = 150 [3-inch boards]
x1 + x3 + 3x4 + 2x6 + 3x7 + 5x8 − y1 = 100 [2-inch board]
xi, yj ≥ 0, xi, yj − integer, i = 1, . . . , 8, ; j = 1, 2, 3.

Example 2. Capital Budgeting with Fixed Investment Proposals. (F.S.
Hillier, G.J. Liebermen Introduction to Operations Research, Example, pp.479-480.)
The company CHC is considering building a new factory in either city A or city
B, or perhaps even in both cities. It is also considering building at most one new
warehouse, but the choice of location is restricted to a city where a new factory is
being built. The net present value - NPV (total profit considering the time value
of money) of each of these alternatives together with the capital required for the
respective investments, are given in the table:

Decision Yes-or-No Decision NPV Capital
number decision variable $ mln required
1 Build factory in A? x1 $9 $6
2 Build factory in B? x2 $5 $3
3 Build warehouse in A? x3 $6 $5
4 Build warehouse in B? x3 $4 $2

The total capital available is $10000000. The objective is to find the feasible combi-
nation of alternatives that maximizes the total net present value.
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Decision variables:

xj =

{

1 if decision j is YES
0 if decision j is NO

j = 1, 2, 3, 4.

Binary Integer Programming Model: The objective function Z = total net present
value: Z = 9x1 + 5x2 + 6x3 + 4x4. The amount of capital expended on the four
facilities cannot exceed $10 million: 6x1+3x2+5x3+2x4 ≤ 10. The company wants
at most one new warehouse: x3 + x4 ≤ 1. The company would consider building a
warehouse in a city only if a new factory were also going there:

x3 ≤ x1 ( if x1 = 0 then x3 = 0, )

x4 ≤ x2 ( if x2 = 0 then x2 = 0).

The final model is as follows:

9x1 + 5x2 + 6x3 + 4x4 = Z → max
6x1 + 3x2 + 5x3 + 2x4 ≤ 10

x3 + x4 ≤ 1
−x1 + x3 ≤ 0
−x2 + x4 ≤ 0

xi ∈ {0, 1} for i=1,2,3,4.

Example 3. The Knapsack Problem. Joe C. is going on an overnight hike.
There are seven items Joe is considering taking on the trip. The weight of each
item and the benefit Joe feels he would obtain from each are listed in the following
table:

Item Weight Benefit
1 5 8
2 2 3
3 7 10
4 1 1
5 6 9
6 8 11
7 2 2

Joe’s knapsack can hold up to 15 lb of items. For j = 1, 2, . . . , 7, define

xj =

{

1 if Joe takes item j on the trip
0 otherwise

Then Joe can maximize his total benefit by solving the following binary problem:

maxZ = 8x1 + 3x2 + 10x3 + x4 + 9x5 + 11x6 + 2x7

5x1 + 2x2 + 7x3 + x4 + 6x5 + 8x6 + 2x7 ≤ 15 [Capacity of the knapsack]
xi ∈ {0, 1}, i = 1, . . . , 7

We consider the following additional constraints:

• Joe has to take item 2 or item 5(at least one item in a group). It suffices to
model the alternative (x2 = 1) ∨ (x5 = 1) by adding the constraint:

x2 + x5 ≥ 1

• Joe cannot take both item 1 and item 6. We model the condition: ¬(x1 =
1 ∧ x6 = 1) ≡ (x1 = 0 ∨ x6 = 0) by adding the constraint:

x1 + x6 ≤ 1
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• If Joe takes item 3, then he must also take item 4. Now we model implication:
(x3 = 1)⇒ (x4 = 1) by adding the constraint:

x4 ≥ x3

Example 4. Fixed-charge Problem. (based on W.L. Winston Operations Re-
search: Applications and Algorithms, Example 8.3, pp.369-372.)
The firm STYLE is capable of manufacturing three types of products: P1, P2 and P3.
The manufacture of each type of product requires the appropriate type of machines.
These machines must be rented at the following rates: machines for P1, $200 per
week; machines for P2, $150 per week; machines for P3, $100 per week. The man-
ufacture of each type of product also requires the amounts of cloth and labor given
in table (6.1). Each week, 150 hours of labor and 160 sq yd of cloth are available.

Labor Cloth
(hours) (square yards)

P1 3 4
P2 2 3
P3 6 4

Table 6.1: Resource requirements for STYLE

The variable unit cost and selling price for each type of product are shown in table
(6.2). Formulate an IPP whose solution will maximize STYLE’s profits.

Sales Variable
Price Cost

P1 $12 $6
P2 $8 $4
P3 $15 $8

Table 6.2: Revenue and Cost for STYLE

• xi = number of units of Pi produced each week, for i = 1, 2, 3.

• yi ∈ {0, 1}, yi = 1 if product Pi is to be produced and yi = 0 otherwise.

Model: The objective function is weekly profit(= weekly revenue - weekly variable
costs - weekly costs of renting machines)

maxZ = 12x1 + 8x2 + 15x3 − (6x1 + 4x2 + 8x3)− (200y1 + 150y2 + 100y3)
= 6x1 + 4x2 + 7x3 − 200y1 − 150y2 − 100y3
3x1 + 4x2 + 7x3 ≤ 150[Labor constraint]
4x1 + 3x2 + 7x3 ≤ 160[Cloth constraint]

x1 ≤M1y1(if x1 > 0 then y1 = 1)
x2 ≤M2y2(if x2 > 0 then y2 = 1)
x3 ≤M3y3(if x3 > 0 then y3 = 1)
x1, x2, x3 ≥ 0; y1, y2, y3 ∈ {0, 1}

From the Labor and Cloth constraints we obtain: M1 = 40,M2 = 53 and M3 = 25.
The optimal solution is: Zopt = 75, x3 = 25, y3 = 1.

Example 5. Set-Covering Problem. (based on W.L. Winston Operations Re-
search: Applications and Algorithms, Example 8.5, pp.375-376.)
There are six cities in a county. The county wants to build the minimum number
of fire stations needed to ensure that at least one fire station is within 15 minutes
(driving time) of each city. The times (in minutes) required to drive between the
cities in the county are shown in the following table:
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City 1 City 2 City 3 City 4 City 5 City 6

City 1 0 10 20 30 30 20
City 2 0 25 35 20 10
City 3 0 15 30 20
City 4 0 15 25
City 5 0 14

The county must determine how many fire stations should be built and where they
should be located. The cities within 15 minutes of a given city are given in the
following table:

Fire station can serve cities

1 1,2
2 1,2,6
3 3,4
4 3,4,5
5 4,5,6
6 2,5,6

Decision variables:

• xi ∈ {0, 1}, xi = 1 if a fire station is built in city i and 0 otherwise, i =
1, . . . , 6.

The constraints must ensure that there is a fire station within 15 minutes of each
city. Model:

x1 + x2 + x3 + x4 + x5 + x6 → min
x1 + x2 ≥ 1 [City 1]
x1 + x2 + x6 ≥ 1 [City 2]
x3 + x4 ≥ 1 [City 3]
x3 + x4 + x5 ≥ 1 [City 4]
x4 + x5 + x6 ≥ 1 [City 5]
x2 + x5 + x6 ≥ 1 [City 6]
xi ∈ {0, 1}, i = 1, . . . , 6

6.2 ADVANCED MODELING

Example 6. (based on W.L. Winston Operations Research: Applications and Al-
gorithms, Example 8.6, pp.377-379.)
The firm DA manufactures three types of autos: compact(TYP1), mid size(TYP2),
and large(TYP3). The resources required for, and the profit yielded by, each type of
car are given in the following table:

TYP 1 TYP 2 TYP 3

Steel required (tons) 1.5 3 5
Labor required (hours) 30 25 40

Profit yielded ($) 2000 3000 4000

At present 6000 tons of steel and 60000 hours of labor are available. The firm DA
wants to maximize its profit.

Decision variables:

• xi - number of cars of type i produced, i = 1, . . . , 3.
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Model:

2000x1 + 3000x2 + 4000x3 → max
1.5x1 + 3x2 + 5x3 ≤ 6000 [Steel usage constraint]
30x1 + 25x2 + 40x3 ≤ 60000 [Labor usage constraint]
x1, x2, x3 ≥ 0 and integer

Let us consider the following additional restrictions:

1. If any cars of a given type are produced, then at least 1000 cars of that type
must be produced.Thus we must have that xi ≤ 0 or xi ≥ 1000 for i = 1, 2, 3.
We should model the alternative:(x1 ≤ 0)∨ (x1 ≥ 1000) as follows: We intro-
duce a binary variable y1 ∈ {0, 1} and add two constraints:

x1 ≤My1
1000− x1 ≤M(1− y1)

where M is a sufficiently large number. If y1 = 0 then x1 ≤ 0. And if y1 = 1
then 1000−x1 ≤ 0 which gives x1 ≥ 1000. Therefore this ensures that at least
one of these constraint is satisfied.

2. If the number of cars of type 3 produced is greater than 500 than the production
of cars of type 2 should be less or equal to 100. Now we want to model a logical
implication (if-then constraint): (x3 > 500) ⇒ (x2 ≤ 100). Applying the
following identity: (p⇒ q) ≡ (∼ p ∨ q) we obtain (x3 > 500)⇒ (x2 ≤ 100) ≡
(x3 ≤ 500) ∨ (x2 ≤ 100) ≡ (x3 − 500 ≤ 0) ∨ (x2 − 100 ≤ 0). We introduce a
binary variable y2 ∈ {0, 1} and include the following constraints ( see 6.1) in
the formulation:

x3 − 500 ≤My2
x2 − 100 ≤M(1− y2)

where M is a large positive number. If x3 > 500, then the first constraint
can be satisfied only if y2 = 1. Then from the second constraint we obtain
x2 ≤ 100. If x3 ≤ 500, then y2 = 0 and the value of x2 is unrestricted (may
be any number).

EITHER-OR-CONSTRAINTS

In the general case, we want to model the alternative:

f(x1, . . . , xn) ≤ 0 ∨ g(x1, . . . , xn) ≤ 0

We wish to ensure that at least one of two constraints is satisfied. We model such a
constraint by introducing a binary variable y ∈ {0, 1} and changing the constraints
as follows:

f(x1, . . . , xn) ≤My
g(x1, . . . , xn) ≤M(1− y)

(6.1)

whereM is sufficiently large number to ensure that f(x1, . . . , xn) ≤M and g(x1, . . . , xn) ≤
M .

IF-THEN CONSTRAINTS

In many situations we wish to model the implication

f(x1, . . . , xn) > 0⇒ g(x1, . . . , xn) ≤ 0.

We can use an equivalent condition:

f(x1, . . . , xn) ≤ 0 ∨ g(x1, . . . , xn) ≤ 0.
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and include constraints (6.1) in the formulation.
If we wish to model the implication:

f(x1, . . . , xn) > 0⇒ g(x1, . . . , xn) ≥ 0

then we use an equivalent condition:

f(x1, . . . , xn) ≤ 0 ∨ −g(x1, . . . , xn) ≤ 0,

and include the following constraints in the formulation:

f(x1, . . . , xn) ≤ My

−g(x1, . . . , xn) ≤ M(1− y)

y ∈ {0, 1}.

Example 7. The Transportation Problem (TP)
The general transportation problem is concerned with distributing any commodity
from a group of supply centers, called sources, to any group of receiving centers,
called destinations, in such a way as to minimize the total cost of distribution.
Each source has a fixed supply of units, and this entire supply must be distributed
to the destinations. Let si denote the number of units supplied by source i, for
i = 1, 2, . . . ,m. Each destination has a fixed demand for units, and this entire
demand must be received from the sources. Let dj denote the number of units received
by destination j, for j = 1, 2, . . . , n. A transportation problem will have a feasible
solution if and only if

m
∑

i=1

si =

n
∑

j=1

dj .

If the problem violates this assumption, it is possible to reformulate the problem by
introducing a dummy destination or dummy source to take up the slack between the
actual amounts and maximum amounts to be distributed. The cost of distributing
units from any particular source to any particular destination is assumed to be
directly proportional to the number of units distributed, i.e. this cost is just the
unit cost of distribution times the number of units distributed. The unit cost of
distributing of a commodity from source i to destination j is denoted by cij. All
the data for TP are included in the following parameter table (6.3): Decision

Cost Per Unit Distributed
Destination

Source 1 2 · · · n Supply
1 c11 c12 · · · c1n s1
2 c21 c22 · · · c2n s2
... . . . . . . . . . . . . .

...
m cm1 cm2 · · · cmn sm

Demand d1 d2 · · · dn

Table 6.3: Parameter table for the transportation problem

variables:

• xij =the number of units to be distributed from source i to destination j, for
i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
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Model:

Minimize Z =
m
∑

i=1

n
∑

j=1

cijxij

n
∑

j=1

xij = si for i=1,2,...,m,

m
∑

i=1

xij = dj for j=1,2,...,n,

xij ≥ 0, for all i and j.

Integer solutions property: For transportation problems, where all the si and dj
have integer values, all the basic variables in every basic feasible solution (including
an optimal basic solution) also have integer values.

Example 8. The Traveling Salesman Problem (TSP). A salesman has to set
out from home to visit a number of customers before finally returning home. The
problem is to find the order in which he should visit all the customers to minimize
the total distance covered. The traveling salesman problem can be formulated as
an integer programming problem as follows: Suppose the cities to be visited are
numbered 1, 2, . . . , n. Any solution to the problem will be referred to as a tour.
Define the 0− 1 integer variables xij as follows:

xij =

{

1 if the tour goes from i to j directly.
0 otherwise.

and extra continuous variables ui for i = 2, . . . , n are introduced. The following
interpretation can be applied to the variables ui: ui= j if i is the j-th city visited.
Model:

MinimizeZ =

n
∑

i6=j

cijxij (6.2)

n
∑

j=1, j 6=i

xij = 1 for i = 1, . . . , n. (6.3)

n
∑

i=1, i6=j

xij = 1 for j = 1, . . . , n. (6.4)

xij ∈ {0, 1} i, j = 1, . . . , n; i 6= j. (6.5)

ui − uj + (n− 1)xij ≤ n− 2 for i, j = 2, . . . , n; i 6= j. (6.6)

1 ≤ ui ≤ n− 1 for i=2,. . . ,n. (6.7)

Conditions (3) states that exactly one city must be visited immediately after city i.
Conditions (4) states that exactly one city must be visited immediately before city
j. Constraint (6) is added to the model to prevent subtours ever arising.

Special algorithms have been developed for the traveling salesman problem.

6.3 NAIVE METHODS FOR SOLVING IPP

1. Apply the simplex algorithm to the LPP obtained by omitting all the integer
constraints and then round the non integer values to integers in the resulting
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solution. We consider an example:

max z = 21x1 + 11x2

7x1 + 4x2 ≤ 13
x1, x2 ≥ 0, x1, x2 integer

0 0.5 1.0 1.5 2.0

0.5

1

1.5

2

2.5

3

3.5

x1

x2

There are six integer feasible solutions (x1, x2): (0,0), (0,1), (0,2), (0,3), (1,0)
and (1,1). The objective function attains its maximum at the point (0,3).
Omitting the integer constraints on the variables we obtain the optimal so-
lution (non integer) at the point (13/7,0). Rounding this result, we obtain
the point (2,0), which is not feasible. Rounding down we receive point(1, 0),
which is not optimal. It may be far from the optimal in terms of the value of
objective function.

2. Perform exhaustive enumeration: Check each solution for feasibility, and if it
is feasible, calculate the value of the objective function. Choose the best one.
We consider the knapsack problem:

maxZ =
∑n

i=1
cixi

∑n

i=1
wixi ≤W

xi ∈ {0, 1}, i = 1 . . . n

We need to generate and evaluate 2n solution to this problem. Assuming that
it takes 10−6 s. to evaluate one solution, we get that for n = 50 the computer
time required will be 35 years and for n = 60 this time will be approximately 36
558 years. So algorithms performing exhaustive enumeration are not effective.

6.4 THE BRANCH-AND-BOUNDMETHOD FOR
SOLVING PURE INTEGER PROGRAMMING
PROBLEMS

Remark 1. There is no an efficient algorithm for solving general IPP.

Definition 4. The linear programming problem obtained by omitting all the integer
or 0-1 constraints on the variables is called the LP relaxation of the IPP.
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Example 9.

maxZ = 21x1 + 11x2

7x1 + 4x2 ≤ 13
x1, x2 ≥ 0
x1, x2 integer

maxZR = 21x1 + 11x2

7x1 + 4x2 ≤ 13
x1, x2 ≥ 0

We introduce the following notions:

• Z∗ - the maximal value of the objective function for the IPP,

• Z∗
R- the maximal value of the objective function fot the LP relaxation of the
IPP.

Property 4. For a maximum problem, the following condition is satisfied Z∗
R ≥ Z∗,

so the LP relaxation gives an upper bound on the value of the objective function for
the IPP.

We can solve the LP relaxation using the simplex algorithm. This will be used
in the branch-and-bound algorithm.

Example 10. Solve the problem:

maxZ = 8x1 + 5x2

6x1 + 10x2 ≤ 45
9x1 + 5x2 ≤ 45
x1, x2 ≥ 0, x1, x2 integer

The branch-and-bound method begins by solving the LP relaxation of the IPP.
Using, for example, the simplex algorithm or graphical method we obtain the opti-
mal solution: x1 = 3.75, x2 = 2.25, Z∗

R = 41.25.

0 1 2 3 4

1

2

3

4

5

5

(3.75,2.25)

x1

x2

Remark 2. If we solve the LP relaxation of a pure IPP and obtain a solution in
which all the variables are integer, then the optimal solution to the LP relaxation is
also the optimal solution to the IPP.

The solution obtained here is not feasible (not all the variables are integer). We
choose a variable that is fractional with the largest coefficient in the objective func-
tion i.e. x1. Each point in the feasible region for this problem must have either
x1 ≤ 3 or x1 ≥ 4. We branch according to the variable x1 and create the following
two additional subproblems (called subproblem 1 and subproblem 2. The Original
problem is called problem 0):
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0

1 2

0 1 2 3 4

1

2

3

4

5

5

1

2

(4,1.8)

(3,2.7)

x1 = 3.75, x2 = 2.25
Z∗

R
= 41.25

x1 ≥ 4x1 ≤ 3

x1 = 4, x2 = 1.8
Z∗

R
= 41

x1 = 3, x2 = 2.7
Z∗

R
= 37.5

A display of all the subproblems that have been created is called a tree. Each
subproblem corresponds to a node of the tree, and each line connecting two nodes
of the tree is called an arc. The constraints associated with any node of the tree are
the constraints of the LP relaxation plus the constraints associated with the arcs
leading from problem 0 to that node. Solving both relaxations of the newly formed
subproblems using the simplex method yields infeasible solutions(non-integer). We
now choose the subproblem (node) with the greater optimal value of the objective
value for the LP relaxation. This is subproblem 2 (node 2). The variable x2 = 1.8
is fractional in the optimal solution to the LP relaxation. We partition the feasible
region for subproblem 2 into those points having x2 ≤ 1 or x2 ≥ 2. This creates the
two subproblems 3 and 4 (nodes 3 and 4). Subproblem 4 is infeasible (has no feasible
solutions), thus it cannot yield the optimal integer solution. This subproblem (node
4) will not be used for further branching - we say that the subproblem(or node) is
closed (or fathomed).

0

1 2

3 4

x1 = 3.75, x2 = 2.25
z∗
R

= 41.25

x1 ≥ 4x1 ≤ 3

x1 = 4, x2 = 1.8
z∗
R

= 41

x1 = 3, x2 = 2.7
z∗
R

= 37.5

x2 ≤ 1 x2 ≥ 2

problem is infeasible
x1 = 4.44, x2 = 1

z∗
R

= 40.55

So we choose to partition subproblem 3 (node 3) by branching according to the
variable x1. This yields two subproblems 5 and 6. Together, subproblems 5 and 6
include all the integer points that were included in the feasible region for subproblem
3. Solving these two subproblems using the simplex algorithm, we obtain optimal
solutions in which all the variables have integer values - such integer solutions are
called candidate solutions. Since a candidate solution may be optimal, we must
keep a candidate solution until a better feasible integer solution (if any exists)
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is found. We close these nodes. Now we have feasible solution (integer) x1 =
5, x2 = 0, Z = 40. We still have to investigate the open subproblem 1. But the
upper bound for this subproblem equals Z∗

R = 37.5 is less then 40. Thus any
feasible solution of subproblem 1 is no better than the current integer solution
x1 = 5, x2 = 0, Z = 40. The node corresponding to subproblem 1 is thus closed(it
is fathomed). Now all nodes are closed (fathomed) and the optimal integer solution
is x1 = 5, x2 = 0, Z = 40.

0

1 2

3 4

5 6

x1 = 3.75, x2 = 2.25
z∗
R

= 41.25

x1 ≥ 4x1 ≤ 3

x1 = 4, x2 = 1.8
z∗
R

= 41

x1 = 3, x2 = 2.7
z∗
R

= 37.5

x2 ≤ 1 x2 ≥ 2

No feasible Solution
x1 = 4.44, x2 = 1

z∗
R

= 40.55

x1 ≤ 4 x1 ≥ 5

x1 = 4, x2 = 1

z∗
R

= 37

x1 = 5, x2 = 0

z∗
R

= 40

6.5 THE BRANCH-AND-BOUNDMETHOD FOR
SOLVING MIXED INTEGER PROGRAM-
MING PROBLEMS

To solve a mixed integer programming problem (MIPP) using branch-and-bound,
we modify the method for pure IP by branching only according to variables that
are required to be integers. Example. Solve the problem:

max z = 2x1 + x2

5x1 + 2x2 ≤ 8
x1 + x2 ≤ 3
x1, x2 ≥ 0, x1 integer

In the mixed integer programming problem some variables are required to be in-
tegers and others are allowed to be either integers or non-integers. We begin the
branch-and-bound method by solving the LP relaxation. The optimal solution is
x1 = 2/3, x2 = 7/3, Z∗

R = 11. Since only x2 is allowed to be fractional, we must
branch according to x1. The branch-and-bound tree is as follows:

0

1 2

x1 = 2/3, x2 = 7/3
z∗
R

= 11

x1 ≥ 1x1 ≤ 0

x1 = 0, x2 = 3

z∗
R

= 3

x1 = 1, x2 = 3/2
z∗
R

= 7/2

The optimal solution x1 = 1, x2 = 3/2, Z∗ = 7/2 is situated at the node 2.
Remarks: The node (subproblem) k is closed or fathomed (eliminated from further
partition) if:
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1. The solution of the LP relaxation for node (subproblem) k is feasible (yields
a candidate solution, i.e. the appropriate variables are integers).

2. The subproblem for node k is not consistent (has no feasible solutions).

3. An integer solution (candidate solution) has been found such that the value of
the objective function is equal or greater than optimal objective value of the
LP relaxation for node(subproblem) k. In this case, the subproblem k cannot
contain a better solution.

6.6 BRANCH-AND-BOUNDALGORITHM FOR
KNAPSACK PROBLEM

Let us consider the following problem:

max z =
∑n

i=1
cixi

∑n
i=1

wixi ≤W
xi ∈ {0, 1}, i = 1 . . . n

where ci - the benefit obtained if item i is chosen, wi - weight of i-th item, W -
capacity of knapsack.

Example. Solve the problem:

max z = 5x1 + 3x2 + 6x3 + 6x4 + 2x5

5x1 + 4x2 + 7x3 + 6x4 + 2x5 ≤ 15,
x1, .., x5 ∈ {0, 1}

The LP relaxation of the problem is as follows:

max zR = 5x1 + 3x2 + 6x3 + 6x4 + 2x5

5x1 + 4x2 + 7x3 + 6x4 + 2x5 ≤ 15,
0 ≤ xi ≤ 1, i = 1, . . . , 5

This problem is called the continuous knapsack problem. Now it is allowed to take
part of an item. The LP relaxation is solved using the following greedy algo-
rithm: We begin by computing the ci

wi
ratios and ordering the variables from best

i ci wi ci/wi Ranking
1 5 5 1 1
2 3 4 3/4 5
3 6 7 6/7 4
4 6 6 1 2
5 2 2 1 3

Table 6.4: Ordering items from best to worst

to worst(the items 1,4 and 5 can be ordered in an arbitrary way ). First we put
the best item in the knapsack. Then put the second-best item in the knapsack.
Continue in this fashion until the best remaining item not fit into the knapsack.
Then fill the knapsack with as much of this item as possible (this is called greedy
method). At the beginning, the capacity of the knapsack is W = 15. First we
put item 1 in the knapsack (the remaining capacity of the knapsack is W = 10),
then we put item 4 (W = 4), next we put item 5 (W = 2) and we put 2

7
of item
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3 (we have now used all the capacity W = 0). We have obtained the solution
x1 = 1, x2 = 0, x3 = 2

7
, x4 = 1, x5 = 1 and Z∗

R = 14 5

7
. This solution is not feasible

(not all the variables are binary) - the variable x3 = 2

7
is fractional. We choose

to partition problem 0, by branching according the variable x3. This yields two
subproblems 1 and 2:

1. Problem 1 - we set x3 = 0 (we consider the LP relaxation without item 3
but the capacity of knapsack is W = 15). The optimal solution of the LP
relaxation is x1 = 1, x2 = 1

2
, x3 = 0, x4 = 1, x5 = 1 i Z∗

R = 14 1

2
.

2. Problem 2 - we set x3 = 1 (we first include item 3 in the knapsack and the
remaining capacity of the knapsack 15-5=10 is filled using the greedy method).
We get the optimal solution of the LP relaxation: x1 = 1, x2 = 0, x3 = 1,
x4 = 1

2
, x5 = 0 and Z∗

R = 14.

These problems have no-integer solutions. So we choose the subproblem (the node
of the branch-and-bound tree) with the largest upper bound z∗R (the optimal value
of the LP relaxation). This is subproblem 1 and it will be further partitioned. The
full branch-and-bound tree for this problem is given by the following picture:

0

2

5 6

1

3 4

x3 = 0 x3 = 1

x2 = 0 x2 = 1 x4 = 0 x4 = 1

z∗R = 14 5

7

(1, 0, 2

7
, 1, 1)

z∗R = 14 1

2

(1, 1

2
, 0, 1, 1)

z∗R = 14

z∗R = 13

(1, 0, 1, 1

2
, 0)

(1, 0, 0, 1, 1)

z∗R = 14 z∗R = 13 3

4
z∗R = 14

(1, 1, 0, 1, 0) (1, 1

4
, 1, 0, 1) ( 2

5
, 0, 1, 1, 0)

Nodes 3 and 4 are closed because they yield the candidate solutions. After obtaining
the candidate solution in node 4 we can close the node 2 because there are no integer
solutions with objective function value greater than 14. The optimal solution is in
node 4: items 1,2 and 4 have to be put in the knapsack.



Chapter 7

Decision Analysis and
Decision Trees

7.1 DECISION CRITERIA UNDERUNCERTAINTY

So far we have focused mainly on decision making when the consequences of alter-
native decisions are known with a reasonable degree of certainty. Such problems
are called problems under conditions of certainty. Now we will study situations in
which decisions are made in an uncertain environment. Decision analysis provides
a framework and methodology for rational decision making when the outcomes of
a decision are uncertain. First we will formulate a general framework for decision
making: The decision maker must choose an action from a set of possible actions.
This set contains all the feasible alternatives (or decision alternatives) under con-
sideration for how to proceed with the problem considered. This choice of action
must be made in the face of uncertainty, because the outcome will be affected by
random factors that are outside the control of the decision maker. These random
factors determine what situation will exist when the action is executed. Each of
these possible situations is referred to as a possible state of nature. For each
combination of an action and state of nature, the decision maker knows, what the
resulting payoff( or any measure which reflects gain or loss ) would be. The payoff
is a quantitative measure of the value to the decision maker of the consequences
of the outcome. A payoff table is commonly used to define the payoff vij for
each combination of an action (decision alternative) ai, i = 1, . . . ,m and a state of
nature θj , j = 1, . . . , n. Such a table is illustrated in table 7.1:

States of nature
Actions θ1 · · · θj · · · θn

a1 v11 · · · v1j · · · v1n
...

... · · ·
... · · ·

...
ai vi1 · · · vij · · · vin
...

... · · ·
... · · ·

...
am vm1 · · · vmj · · · vmn

Table 7.1: Payoff table

Let us consider the following example:

Example 11. (Based on W.L. Winston Operations Research: Applications and

55
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Algorithms, Example 12.1, pp. 569-750.) News vendor Phyllis sells newspapers,
and each day she must determine how many newspapers to order. Phyllis pays a
company $0.20 for each paper and sells the papers for $0.25 each. Newspapers that
are unsold at the end of the day are worthless. Phyllis knows that each day she can
sell between 6 and 10 papers, with each possibility being equally likely. The set of
possible actions (papers purchased) is {a1(6), a2(7), a3(8), a4(9), a5(10)} and the set
of states of nature(papers demanded) is {θ1(6), θ2(7), θ3(8), θ4(9), θ5(10)}. If Phylis
purchases i papers and j papers are demanded, then i papers are purchased at a cost
of $0.20 and min{i, j} are sold for $0.25 each. Thus she earns a net profit(payoff)
of vij:

vij = 0.25(5 + i)− 0.20(5 + i) = 0.05(5 + i) (i ≤ j) (7.1)

vij = 0.25(5 + j)− 0.20(5 + i) (i ≥ j) (7.2)

where i, j = 1, . . . , 5. The payoff table (the values vij in dollars) for this problem is
given in table 11:

Actions States of nature(papers demanded) Minimum
(Papers purchased) θ1(6) θ2(7) θ3(8) θ4(9) θ5(10)

a1(6) 0.30 0.30 0.30 0.30 0.30 0.3
a2(7) 0.10 0.35 0.35 0.35 0.35 0.1
a3(8) -0.10 0.15 0.40 0.40 0.40 -0.1
a4(9) -0.30 -0.05 0.20 0.45 0.45 -0.3
a5(10) -0.50 -0.25 0 0.25 0.50 -0.5

Table 7.2: Payoff table for Phyllis

Why did we not consider the possibility that Phyllis would order 1,2,3,4,5, or
more than 10 papers? Answering this question involves the idea of a dominated
action (alternative).

Definition 5. An action (alternative) ai is dominated by action ai′ if for all states
of nature θj , j = 1, . . . , n, vij ≤ vi′ j and for some state of nature θj′ vij′ < vi′ j′ .

If action ai is dominated, then in no state of nature is ai better than ai′ , and
in at least one state of nature ai is inferior to ai′ . Thus, if action ai is dominated,
there is no reason to choose ai(ai′ would be a better choice). From the payoff table,
we see that none of the actions {a1, a2, a3, a4, a5} are dominated. We assume that
the payoff table for a decision problem contains only non-dominated alternatives
(actions).
We now consider four decision criteria that can be used to choose an action.

These criteria differ in how conservative the decision maker is, in the face of uncer-
tainty. We assume that the payoff table is given for the problem, but the decision
maker has no information about the relative likelihood of the possible states of
nature.

Maximin (or Minimax) Payoff Criterion(Wald 1950) For each alternative,
determine the worst case (smallest payoff if vij is a gain (e.g. profit) and
largest payoff if payoff is loss (e.g. cost)). The maximin(minimax) criterion
chooses the alternative with the best of the worst case outcome. If vij is loss
(cost), then we select the action that corresponds to the minimax criterion

min
ai

{

max
θj

vij

}

,
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and if vij is a gain (profit), then we select the action that corresponds to the
maximin criterion

max
ai

{

min
θj

vij

}

.

For the problem consideredmaximin criterion recommends ordering 6 papers
i.e. choosing action a1.

Hurwicz Criterion(1951) This criterion takes into account the attitudes of the
decision maker in the face of uncertainty. Fix the value of the parameter α
where 0 ≤ α ≤ 1, and assume that vij represents a gain (profit). The Hurwicz
criterion chooses the action ak so that the following condition is fulfilled:

αok + (1− α)sk = max
ai

{αoi + (1− α)si},

where si = minaj
{vij}, oi = maxaj

{vij} and α is a given coefficient. The
parameter α is called the index of optimism( or pessimism ). If α = 0
then we obtain the maximin criterion (the most conservative) and if α =
1 we obtain maximax criterion (the most optimistic). Thus the subjective
preferences of a decision maker in environments characterized by risk could
be described by this coefficient. For the example considered if α = 0.5 (the
absence of strong feeling regarding optimism and pessimism) the Hurwicz
criterion recommends action a1. If vij represents a loss, then the choise of the
optimal action ak is changed to

αsk + (1− α)ok = min
ai

{αsi + (1− α)oi}.

Minimax Regret Criterion(Savage 1951) We construct the new regret matrix
rij as follows:

rij =

{

maxak
{vkj} − vij if vij is a gain

vij −minak
{vkj} if vij is a loss.

The minimax regret criterion chooses an action by applying the minimax
criterion to the regret matrix. In other words, the minimax regret criterion
attempts to avoid disappointment over what might have been. For Phyllis’s
problem, the regret matrix rij is given in table 7.1. The minimax regret

Actions States of nature(papers demanded)
(Papers purchased) θ1(6) θ2(7) θ3(8) θ4(9) θ5(10)

a1(6) 0 0.05 0.10 0.15 0.20
a2(7) 0.20 0 0.05 0.10 0.15
a3(8) 0.40 0.20 0 0.05 0.10
a4(9) 0.60 0.40 0.20 0 0.05
a5(10) 0.80 0.60 0.40 0.20 0

Table 7.3: Regret matrix for Phyllis’s problem

criterion recommends ordering 6 or 7 papers.

Laplace Criterion This criterion is based on the principle of insufficient rea-
son. Because the probability of occurrence of these states of nature are not
known, there is no reason to assume that this probabilities are different. So
we use the optimistic assumption that all the states are equally likely to occur
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- that is, Pr{θ1} = Pr{θ2} = · · · = Pr{θn} =
1

n
. We choose the action ak

with the best mean payoff:

n
∑

j=1

1

n
vkj =

m
max
i=1
{

n
∑

j=1

1

n
vij}.

If vij represents a loss, then minimization replaces maximization.

7.2 DECISION CRITERIA UNDER RISK

7.2.1 DECISION MAKING WITHOUT EXPERIMENTA-
TION

The decision maker generally will have some information that should be taken
into account about the relative likelihood of the possible states of nature. Such
information can usually be translated into a probability distribution referred to as
a prior distribution. The probability for the respective states of nature provided
by the prior distribution are called prior probabilities. Let us consider a new
example.

Example 12. (F.S. Hiellier, G.J. Lieberman Operations Research, Prototype Ex-
ample, pp. 681.)
The Oil&Gas Co. owns land that may contain oil. A consulting geologist believes
that there is 1 chance in 4 (probability 0.25 ) of oil. Another company has offered
to purchase the land for $90000. However, the Oil&Gas Co. is considering holding
the land in order to drill for oil itself. The cost of drilling is $100000. If oil is
found, the resulting expected revenue will be $800000, so the company’s profit (after
deducting the cost of drilling) will be $700000. A loss of $100000 will be incurred if
the land is dry (no oil). The payoff table for this problem is given in table 7.4.

State of nature
Alternative θ1(Oil) θ2(Dry)
a1(Drill for oil) $700000 -$100000
a2(Sell the land) $90000 $90000
Probability 0.25 0.75

Table 7.4: Payoff table for the Oil&Gas Co.

There are two criteria that can be used to define an optimal action:

The Maximum Likelihood Criterion Identify the most likely state of nature
(the one with the largest probability). For this state of nature, find the action
with the maximum payoff. Choose this action. In the example considered the
optimal action is a2 (Sell the land).

Bayes’s Decision Rule Calculate the expected value of the payoff for each of
the possible actions. Choose the action with the maximum expected payoff.
In the considered example expected values for actions a1, a2 are respectively
EV (a1) = 100000, EV (a2) = 90000. Since 100000 is larger than 90000, the
optimal action is to drill for oil.

For a decision problem under risk, the important notion of the Expected Value of
Perfect Information, abbreviated EVPI, is introduced. Suppose now that an exper-
iment could definitely identify what the true state of nature is, thereby providing



7.2. DECISION CRITERIA UNDER RISK 59

”perfect” information. Whichever state of nature is identified, you choose the ac-
tion with the best payoff for that state. We do not know in advance which state
of nature will be identified, so a calculation of the expected payoff with perfect
information requires weighting the maximum (minimum if vij is a cost) payoff for
each state of nature by the prior probability of that state of nature. For example,
for the Oil&Gas Co. the probability (prior probability) of the states of nature are
Pr(θ1) = p1 = 0.25 and Pr(θ2) = p2 = 0.75,
The expected value with perfect information = 0.25 (700000)+ 0.75(900000)=242500.
The EVPI is calculated as
EVPI=Expected value with perfect information - expected value with-
out perfect information.
In the example considered, we have:

EV PI = 242500− 100000 = 142500.

So if the cost of experimentation (a seismic survey) is $30000, it may be worthwhile
to proceed with the seismic survey to get better information about the probabilities
of the possible states of nature (posterior probabilities).

Example 13. Bob Warren is the manager of the Butterfly Grocery Store. He needs
to replenish his supply of strawberries. His regular supplier can provide as many
cases as he wants. However, because these strawberries are already very ripe, he
will need to sell them tomorrow and discard any that remain unsold. Bob estimates
that he will be able to sell 10, 11, 12 or 13 cases tomorrow. He can purchase the
strawberries for $3 per case and sell them for $8 per case. Bob now needs to decide
how many cases to purchase. He has checked the store’s records on daily sales of
strawberries. On this basis, he estimates that the prior probabilities are 0.2, 0.4, 0.3
and 0.1 for being able to sell 10, 11, 12 and 13 cases of strawberries tomorrow. Let
ai represent the action of purchasing 9+ i(i = 1, . . . , 4) cases of strawberries and θj
represent the state of nature that daily demand will be 9+ j(j = 1, . . . 4) cases. Bob
earns a net profit (payoff) of vij:

vij = 50 + 5(i− 1) (i ≤ j) (7.3)

vij = 5(9 + j)− 3(j − i) (i > j), (7.4)

where i, j = 1, . . . , 4. The payoff table (the values vij in dollars) for Bob’s decision
problem is given in table 7.5. The value EV (ai) is the expected value of alternative
ai, i.e. EV (ai) = Pr{θ1}vi1+Pr{θ2}vi2+Pr{θ3}vi3+Pr{θ4}vi4 = 0.2vi1+0.4vi2+
0.3vi3 + 0.1vi4. Since the maximum expected value is obtained for alternative a3,

vij(Profit) θ1 θ2 θ3 θ4 EV (ai)
a1 50 50 50 50 50
a2 47 55 55 55 53.4
a3 44 52 60 60 53.6
a4 41 49 57 65 51.4
Prior probability 0.2 0.4 0.3 0.1

Table 7.5: Payoff (profit in dollars) table for the Bob problem

the optimal alternative for Bob, according to Bayes’ Decision Rule, is to purchase
12 cases of strawberries. He then obtains his maximum expected payoff (profit of
$53.6).

7.2.2 DECISION TREE

A decision tree is another method of analysing decision making problems under risk.
These trees are especially helpful when a sequence of decisions must be made. The
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definition and application of decision trees will be illustrated by an example.

Example 14. The investor Mic Risky has just purchased a textile factory and now
he is considering three possible decisions:

1. Expand the factory to produce army uniforms.

2. Still produce the same cotton textiles (Status Quo), but there are a lot of
competitors.

3. Sell the factory immediately.

In the case of the first and second alternatives the factory will be sold after one year.
The profit will depend on the conditions on the market, which are either good(state
of nature θ1) or poor (state of nature θ2). Mic estimates that the probabilities
of good and poor market conditions are 0.7 and 0.3, respectively. Payoff table 7.6
summarizes the data for Mic’s decision problem.

State of nature
Good conditions Poor conditions

Actions on the market on the market
Expand $800000 $500000
Status quo $1300000 $-150000
Sell $320000 $320000
Prior probability 0.7 0.3

Table 7.6: Payoff table for Mic’s problem

The problem under consideration could be represented as a decision tree(see
Figure 7.1) in which three kinds of nodes (also referred to as forks) are distinguished:

A decision node, represented by a square, which indicates that a decision needs
to be made at that point in the process.

A chance node, represented by a big circle, indicates that a random event(state
of nature) occurs at that point.

An end( or terminal) node, represented by a small circle.

The three branches emanating from decision node 1 represent the three possible
choices (decision alternatives): Expand, Status quo and Sell. Next, the branches
emanating from each chance node (2,3 and 4) correspond to the two possible states
of nature(good conditions and poor conditions on the market). The number in
parentheses along the branch is the probability of a random event called the prior
probability of a state of nature. The resulting total payoff is given to the right of each
terminal node, evaluated expected value of a given alternative, is given at the cor-
responding node e.g. chance node 2: EV (Expand) = (0.7)800000 + (0.3)500000 =
710000, chance node 3:EV (Status quo) = (0.7)1700000 − (0.3)150000 = 865000,
chance node 4: EV (Sell) = (0.7)320000 + (0.3)320000 = 320000. From this deci-
sion tree, we can see that the optimal policy for Mic is Status quo, which gives him
a maximal expected profit of $865000.
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Figure 7.1: Decision tree for Mic’s problem

7.2.3 DECISION MAKING WITH EXPERIMENTATION

Now we consider the situation when additional testing(experimentation) can be
done to improve the preliminary estimates of the probabilities of the respective
states of nature given by the prior probalities. These improved estimates are called
posterior probabilities. Let us assume that in the problem considered Mic en-
gaged a consulting firm to obtain better estimates of the market situation in the
future. The firm formulates a report which will be positive (P) - indicating good
future conditions on the market or negative (N) - indicating poor conditions on the
market. Based on past experience, if there are good (g) or poor (p) conditions on
the market, the conditional probabilities are as follows:

Pr{P/g} = 0.7, P r{N/g} = 0.3; Pr{P/p} = 0.2, P r{N/p} = 0.8.

Applying Bayes’ theorem and the above formula we can evaluate the following
posterior probabilities:
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Pr(g/P ) =
Pr(P/g)Pr(g)

Pr(P/g)Pr(g) + Pr(P/p)Pr(p)
(7.5)

=
(0.7)(0.7)

(0.7)(0.7) + (0.2)(0.3)
(7.6)

= 0.891 (7.7)

Pr(p/P ) = 0.109 (7.8)

Pr(g/N) =
Pr(N/g)Pr(g)

Pr(N/g)Pr(g) + Pr(N/p)Pr(p)
(7.9)

=
(0.3)(0.7)

(0.3)(0.7) + (0.8)(0.3)
(7.10)

= 0.467 (7.11)

Pr(p/N) = 0.533. (7.12)

Now we can construct a new decision tree taking into account these posterior prob-
abilities and determine how Mic can maximize his expected profit. The complete
decision tree is shown in Figure 7.2.
This time the first node of the decision tree is chance node 1. The two branches,

tagged Positive and Negative, emanating from node 1 represent the possible out-
comes of the market report. The probabilities of occurence of these events are
calculated as follows:

Pr(Positive) = Pr(P ) = Pr(P/g)Pr(g) + Pr(P/p)Pr(p)

= (0.7)(0.7) + (0.2)(0.3)

= 0.49 + 0.06 = 0.55.

P r(Negative) = Pr(N) = Pr(N/g)Pr(g) + Pr(N/p)Pr(p)

= (0.3)(0.7) + (0.8)(0.3)

= 0.21 + 0.24 = 0.45.

The rest of the decision tree has the same structure as the tree in Figure7.1. But now
the previously computed posterior probabilities are used for the branches emanating
from chance nodes. To determine the decision that will maximize Mic’s expected
profit, we work backwards from right to left. At each chance node we calculate
the expected payoff (profit from expanding at for example node 4, corresponds to
state nature Expand EV (Expand) = (0.891)800000+(0.109)500000 = 767300. For
decision node 2, we evaluate the expected value as follows

max{EV (Expand), EV (Status quo), EV (Sell)} = max{767300, 1141950, 320000}

= 1141950

and for decision node 3 we get 640100. The expected value for chance node 1
is computed using the expected profit values for node 2 and 3 and the posterior
probabilities of the events ”Positive Report” and ”Negative Raport” and is equal
to 916117.5=(0.55)1141850 + (0.45)640100. The optimal sequence of decisions can
be obtained from the decision tree as follows:

• If the report is Positive, Mic needs to choose the action Status quo.

• If the report is Negative, Mic needs to choose the action Expand.

This strategy gives Mic his maximal expected profit of 916117.5. Without this
additional information (posterior probability), Mic’s expected profit equals $865000.
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Figure 7.2: Decision tree with posterior probabilities
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Chapter 8

Multiple Objective Linear
Programming and Goal
Programming

8.1 MULTIPLE OBJECTIVE LINEAR PROGRAM-
MING (MOLP)

Every conscious decision maker (DM) desires to realize his aims optimally. What
does this mean in situations where the DM needs to consider multiple criteria(objectives)
in arriving at an overall best decision. We now consider the situation in which the
set of feasible decisions and set of q criteria (we assume that there are at least two
criteria) for evaluating the decisions can be described in the form of the maximiza-
tion of q linear objective functions subject to m linear constraints. Formally, a
Multiple Objective Linear Programming Problem (MOLPP) can be described as:

f1(x) = c11x1 + c12x2 + · · ·+ c1nxn → maximize

f2(x) = c21x1 + c22x2 + · · ·+ c2nxn → maximize

. . .
...
...

fq(x) = cq1x1 + cq2x2 + · · ·+ cqnxn → maximize

subject to

X



























a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .
...
...

am1x1 + am2x2 + · · ·+ amnxn = bm
xj ≥ 0, j = 1, . . . , n.

The set of feasible solutions X ⊂ R
n is defined by the set of m constraints (in-

equalities or equations) for the problem and the nonnegativity constraints. Each
feasible solution xxx = (x1, . . . , xn) ∈ X (which is an n-dimensional vector of de-
cision variables in the so called decision space R

n) implies a value for each ob-
jective function fi(x), i = 1, . . . , q. Hence, each xxx ∈ X corresponds to a vector
yyy = (y1, y2, . . . , yq) ∈ R

q, where

yyy = (y1, y2, . . . , yq) = (f1(xxx), f2(xxx), . . . , fq(xxx)).

65
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The i-th coordinate of the vector yyy (yi = fi(xxx)) is an evaluation of the decision xxx
from the point of view of the i-th criterion. The set of vectors yyy corresponding to
the set X is denoted by Y ∈ Rq:

Y = {yyy = (f1(xxx), f2(xxx), . . . , fq(xxx)) : xxx ∈ X}.

The set Rq is called objective space. If there exists a feasible solution xxx such that
the maximum of each objective function occurs at the point xxx, then this solution is
optimal (it is a called perfect solution). But this happens very seldom - frequently
such a point does not exist or does not belong to the set of feasible solutions X.
The concept of a noniferior or Pareto-optimal solution or efficient solution
for a Multiple Objective Linear Programming Problem is defined as follows:

Definition 6. A noninferior solution is a feasible solution to the problem, xxx0 ∈ X,
such that no other feasible solution, xxx, exists for which fp(xxx) > fp(xxx

0) for some
p = 1, 2, . . . , q, and fi(xxx) ≥ fi(xxx

0) for all i 6= p.

Noninferior solutions can be defined in decision space (X), as well as in objective
space (Y). We will denote by XP the set of all noniferior (Pareto-optimal) solutions
to the MOLPP in decision space, and by YP we denote the set of noninferior (also
called nondominated) solutions in objective space. So we have:

YP = {yyy = (y1, y2, . . . , yq) = (f1(xxx), f2(xxx), . . . , fq(xxx)) : xxx ∈ XP }.

Now we present a fundamental insight into a property of the sets XP and YP .

Property 5. If the set X is a bounded polyhedral set(polytope), then the set Y
is also a polytope. Every extreme point (vertex) of Y = {yyy = (y1, y2, . . . , yq) =
(f1(xxx), f2(xxx), . . . , fq(xxx)) : xxx ∈ X} is the projection of an extreme point of X.

Property 6. Nondominated (noninferior) points in the set Y belong to the periph-
ery of the set Y. No internal point of Y can be a nondominated solution.

Let us consider the following example with two criteria :

Example 15.

f1(x) = −4x1 + 3x2 → maximize

f2(x) = 7x1 + 5x2 → maximize

subject to

X































x1 + x2 ≥ 3 (1)
−2x1 + 3x2 ≤ 12 (2)

x2 ≤ 6 (3)
6x1 + x2 ≤ 42 (4)
x1 ≥ 0 (5)

x2 ≥ 0 (6).

Using this example, we now illustrate the main notions of MOLPP.

We can see from Figure 8.1 that the set of feasible solutions X is the polygon
ABCDEF, the objective functions f1(x1, x2) and f2(x1, x2) are represented by bro-
ken lines, y1 = 12 = f1(x1, x2) and y2 = 72 = f2(x1, x2). The perfect solution is
the point K(3 33

41
, 9 3

41
) but it does not belong to the set of feasible solutions, so it

cannot be a solution to the problem. First, to find the solution, i.e. the set XP , for
this two-criteria problem , we will plot the set Y. The extreme points (vertexes) of
the set X and the values of the functions f1, f2 at these points are given in Table
8.1.
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Figure 8.1: Decision space for the Two-Criteria Decision Problem

Node xxx y1 = f1(xxx) y2 = f2(xxx) y(xxx) = (y1, y2)
A(3,0) -12 21 y(A)=(-12,21)
B(0,3) 9 12 y(B)=(9,12)
C(0,4) 12 20 y(C)=(12,20)
D(3,6) 6 51 y(D)=(6,51)
E(6,6) -6 72 y(E)=(-6,72)
F(7,0) -28 49 y(F)=(-28,49)

Table 8.1: Extreme nodes of X

The set Y is shown in Figure 8.2 as the polytope y(A)y(B)y(C)y(D)y(E)y(F ).
Each vertex from Y has a corresponding extreme point in X(Property 1). But
the converse property is not valid in general. There could be an extreme point
xxx

′

∈ X such that the point y(xxx
′

) is not an extreme point in Y (this is not the case
in the example considered ). The set of nondominated solutions in Y is the set
of points of edge y(C)y(D) along the edge y(D)y(E) (solid lines) of the polytope
y(A)y(B)y(C)y(D)y(E)y(F ). Finally, because a nondominated point in Y corre-
sponds to a noniferior feasible solution in X, the solution to the two-criteria problem
is the set of points along the edges CD and DE in the polytope ABCDEF (see Figure
8.1). A lot of techniques for solving MOLPP have been developed. Many of them
are confined to the generating the set of noniferior solutions to the problem, and do
not require any specification of the priority of goals by the decision maker (see Ralph
E. Steur Multiple Criteria Optimization: Theory, Computation, and Application).
Now we proceed to Goal Programming which requires such a specification.
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Figure 8.2: Objective space for the Two-Criteria Decision Problem

8.2 GOAL PROGRAMMING (Charnes and Cooper
1961)

Goal Programming(GP) is based upon minimizing the sum of the weighted absolute
deviations of objectives fi(xxx) from targets Ti. Thus, the GP formulation of the
initial MOILP is the following linear programming problem:

min

q
∑

i=1

wi(di + ei),

subject to

xxx ∈ X

fi(xxx)− di + ei = Ti, for i = 1, . . . , q

di, ei ≥ 0, for i = 1, . . . , q,

where di and ei are the positive and negative parts of the differences of the i-th
objective from its target, respectively, and wi is the weight or priority attached
to the i-th goal. The wi can also be split into two components - one for positive
differences (di) and one for negative differences (ei). We will use an example to
illustrate goal programming.

Example 16. A workshop is planning the monthly production of three products:
A,B, and C. Product A requires 6 minutes, B 4 minutes and C 5 minutes to be fab-
ricated. The workshop has 250 hours available each month, beyond which overtime
is required, at a cost of $15 per hour. Painting the products is also required, with
times of: 20 minutes per unit of A, 24 minutes per unit of B, and 30 minutes per
unit of C. There are three painters in the workshop, each working 200 hours per
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month. The factory cannot sell a total of more than 3000 units in a month. The
profit margins are $20, $28, and$40 for A,B, and C respectively. The workshop has
four goals:

1. A desired monthly profit level of $120000.

2. Overtime costs of $1000 is allowed.

3. Finishing hours should not exceed 1200 each month.

4. At least 200 of B should be produced.

The formulation of the goal programming (GP) model of this problem is as follows.
The decision variables:

x1 = number of units of A produced per month,

x2 = number of units of B produced per month,

x3 = number of units of C produced per month.

GP model:
Z = e1 + d2 + d3 + e4 → minimize

subject to

x1 + x2 + x3 ≤ 3000 (The system constraint) (8.1)

20x1 + 28x2 + 40x3 + e1 − d1 = 120000 (Profit) (8.2)

1.5x1 + x2 + 1.25x3 + e2 − d2 = 4750 (Overtime limit) (8.3)

20x1 + 24x2 + 30x3 + e3 − d3 = (1200× 60 =)72000 (Finishing time) (8.4)

x2 + e4 − d4 = 200 (Production of product B) (8.5)

xi, dj , ej ≥ 0 for i = 1, 2, 3; j = 1, . . . , 4. (8.6)

The constraint 8.1 is only one restriction imposed on the levels of production and
it is called the system constraint. Constraints 8.2 - 8.5 are called goal constraints
because they define the deviation - di=the amount by which the i-th goal(target)
is overachieved or ei= the amount by which the i-th goal(target) is underachieved.
Constraint 8.3 is obtained as follows. The demand for time (in minutes) is: 6x1 +
4x2 + 5x3. The supply is 250 hours×60 minutes=15000 minutes. Overtime will be
paid after 15000 minutes, that is: Overtime=(6x1 + 4x2 + 5x3)-15000. The cost
of overtime is: $15 per hour or $0.25 per minute. Therefore we have: 0.25[(6x1 +
4x2 + 5x3) − 15000] + d2 − e2 = 1000 and finally we get constraint 8.3. There are
only undesirable deviations in the objective function.

Let us assume that in the above example the manager could exactly determine
the relative importance of the four goals. For example, suppose he determined that
profit (goal 1) is the most important goal, the next is production of B (goal 4),
overtime (goal 2) and painting time (goal 3) are both the least important goals.
Weights for the arguments of the objective function must be introduced into the
GP model. For example, suppose w1 = 5, w4 = 3, w2 = w3 = 1 (i.e. goal 1 is
5 times as important as the goal 2, goal 4 is 3 times as important as goal 2, goals
2 and 3 are equally the least important goals). Then the objective function of the
GP model would be

Z = 5e1 + d2 + d3 + 3e4 → minimize

In many situations, a decision maker may not be able to precisely determine the
relative importance of the goals, but she/he can rank the goals from the most
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important (goal 1) to the least important (goal q). When this the case, pre-emptive
goal programming is used. The idea of the method is as follows. The decision maker
first tries to satisfy the most important goal 1. Then, among all the points that
satisfy goal 1, the decision maker tries to come as close as possible to satisfying
goal 2, and so forth. We continue in this fashion until the only way we can come
closer to satisfying a goal is to increase the deviation from a higher-priority goal.
The interested reader can find more details in the texbook by Anderson, Sweeney
and Williams An Introduction to Management Science.
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